Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Andres Quiros Zhang Shuai Cheng Xiaohui, . STUDY OF THE MICP INJECTION IN UNSATURATED SANDY SOILS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 28-30. doi: 10.13204/j.gyjz201507006
Citation: LIU Zidan, JIAO Wenshuai, CHENG Zhan, DU Guofeng. Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 17-27. doi: 10.13204/j.gyjzG22072605

Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns

doi: 10.13204/j.gyjzG22072605
  • Received Date: 2022-07-26
  • Concrete-filled stainless steel tubular columns show excellent prospects for application in corrosive environments such as harbor engineering and marine engineering. To further develop the performance of such structures, a composite structure, i. e. steel-reinforced ultra-high performance concrete-filled stainless steel tubular column was proposed in this paper. Meanwhile, six short and eight medium-length column specimens were designed and fabricated with the parameters of diameter to thickness ratio, length to diameter ratio, steel profile content ratios, etc. Axial compression experiments and finite element analysis were executed to investigate the failure mode and failure mechanism of the specimens, as well as the influence of relevant parameters on the mechanical performance of the specimens. The results showed that the bearing capacity and ductility of the specimens increased with the decreasing of the diameter to thickness ratios and length to diameter ratios, and increased with the increding of the steel profile content ratios and strength of the pre-embedded steel profile; the ductility of the specimen decreased with the increase in core concrete strength, but the bearing capacity was the opposite. Based on the experimental and finite element results, a prediction model for the bearing capacity of steel-reinforced ultra-high performance concrete-filled stainless steel tubular was proposed, providing a reference for the engineering application of such structures.
  • [1]
    韩林海.钢管混凝土结构:理论与实践[M].2版.北京:科学出版社,2007.
    [2]
    BEN Y, EHAB E. Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns[J]. Journal of Constructional Steel Research, 2005, 62(5):484-492.
    [3]
    ELLOBODY E. Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns[J]. Thin-Walled Structures, 2007, 45(3):259-273.
    [4]
    张纪刚,舒凡,赵铁军,等.不锈钢管中管混凝土海洋平台导管腿轴压性能试验研究[J].建筑结构学报,2018,39(增刊1):279-285.
    [5]
    刘艳芝,邓集钱,谭清华.内嵌十字型钢的方形劲性不锈钢管混凝土柱耐火性能[J].建筑科学与工程学报,2019,36(3):66-73.
    [6]
    李永进,廖飞宇,黄海清.矩形不锈钢管混凝土柱双向偏压力学性能试验研究[J].建筑钢结构进展,2018,20(2):60-66.
    [7]
    张建周,郭旺,安泽宇.型钢-PBL加劲型方不锈钢管混凝土轴压短柱非线性分析[J].建筑结构,2017,47(增刊2):249-254.
    [8]
    代鹏,杨璐,卫璇,等.不锈钢管混凝土短柱轴压承载力试验研究[J].工程力学,2019,36(增刊1):298-305.
    [9]
    马国梁. 不锈钢管再生混凝土轴压和弯曲性能研究[D].大连:大连理工大学,2013.
    [10]
    廖飞宇.圆不锈钢管混凝土轴压力学性能的有限元分析[J].福建农林大学学报(自然科学版),2009,38(6):659-662.
    [11]
    徐晨豪,赵俊亮,金国平.圆不锈钢管混凝土轴压短柱三维有限元分析[J].混凝土,2017(7):44-46,49.
    [12]
    PATEL V, HASSANEIN M, THAI H T, et al. Behaviour of axially loaded circular concrete-filled bimetallic stainless-carbon steel tubular short columns[J]. Engineering Structures, 2017,147:583-597.
    [13]
    乔崎云,张雯雯,曹万林,等.薄壁不锈钢管-钢骨混凝土短柱轴压力学性能试验研究[J].工业建筑,2020,50(2):143-149.
    [14]
    王德辉,史才军,吴林妹.超高性能混凝土在中国的研究和应用[J].硅酸盐通报,2016,35(1):141-149.
    [15]
    韦建刚,罗霞,欧智菁,等.圆高强钢管超高性能混凝土短柱轴压性能试验研究[J]. 建筑结构学报, 2020, 41(11): 16-28.
    [16]
    孙墨林. 钢管约束型钢超高强混凝土短柱轴压受力性能研究[D]. 大连:大连理工大学, 2017.
    [17]
    中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范:GB 50936—2014[S]. 北京:中国建筑工业出版社, 2014.
    [18]
    中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社, 2021.
    [19]
    中国工程建设标准化协会. 超高性能混凝土(UHPC)技术要求:T/CECS 10107—2020[S]. 北京:中国计划出版社, 2020.
    [20]
    陆纪平. FRP约束超高性能混凝土受压性能[D]. 南京:东南大学, 2020.
    [21]
    RAMBERG W, WILLIAM R O. Description of stress-strain curves by three parameters:No.NACA-TN-902[R]. National Advisory Committee for Aeronautics, Technical Note, 1943.
    [22]
    BSI. Eurocode 3-Design of steel structures-part 1-4: general rules-supplementary rules for stainless steels:EN 1993-1-4[S].UK: British Standards Institution, 2006.
    [23]
    MANDER J, PRIESTLEY M. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
    [24]
    GRAYBEAL B A. Compressive behavior of ultra-high-performance fiber-reinforced concrete[J]. ACI Materials Journal, 2007, 104(2):146.
    [25]
    LIM J C, OZBAKKALOGLU T. Stress-strain model for normal-and light-weight concretes under uniaxial and triaxial compression[J]. Construction & Building Materials, 2014, 71: 492-509.
    [26]
    AHMED M, LIANG Q Q, PATEL V I, et al. Nonlinear analysis of rectangular concrete-filled double steel tubular short columns incorporating local buckling[J]. Engineering Structures, 2018,175:13-26.
    [27]
    LIANG Q Q. Performance-based analysis of concrete-filled steel tubular beam-columns, part I: theory and algorithms[J]. Journal of Constructional Steel Research, 2009, 65(2):363-372.
    [28]
    LU Q R, XU L H, CHI Y, et al. A novel analysis-oriented theoretical model for steel tube confined ultra-high performance concrete[J/OL]. Composite Structures, 2021,264[2021-02-23].https://doi.org/10.1016/j.compstruct.2021.113713.
    [29]
    HU H T, HUANG C S, WU M H, et al. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect[J]. Journal of Structural Engineering, 2003, 129(10):1322-1329.
    [30]
    LIANG Q Q, FRAGOMENI S. Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading[J]. Journal of Constructional Steel Research, 2009, 65(12):2186-2196.
    [31]
    TANG J L, HINO S I, KURODA I, et al. Modeling of stress-strain relationships for steel and concrete in concrete filled circular steel tubular columns[J]. Steel Construction Engineering, 1996, 3(11):35-46.
    [32]
    HUANG W, FAN Z C, SHEN P L, et al. Experimental and numerical study on the compressive behavior of micro-expansive ultra-high-performance concrete-filled steel tube columns[J/OL].Construction and Building Materials, 2020,254[2020-04-30].https://doi.org/10.1016/j.conbuildmat.2020.119150.
    [33]
    HAN L H, YAO G H, ZHONG T. Performance of concrete-filled thin-walled steel tubes under pure torsion[J]. Thin-Walled Structures, 2007, 45(1): 24-36.
    [34]
    TAN Q, GARDNER L, HAN L H, et al. Fire performance of steel reinforced concrete-filled stainless steel tubular (CFSST) columns with square cross-sections[J/OL]. Thin-Walled Structures, 2019,143[2019-05-26].https://doi.org/10.1016/j.tws.2019.106197.
    [35]
    GARDNER L, NETHERCOT D A. Numerical modeling of stainless steel structural components: a consistent approach[J]. Journal of Structural Engineering, 2004,130: 1586-1601.
  • Relative Articles

    [1]ZHU Qi, XU Maohu, YE Lihao, CAI Wei, XIE Wen. Experimental Research on Bending Fatigue Performance of UHPC-T Beams and Evaluation of Their Residual Bearing Capacity[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 131-138. doi: 10.13204/j.gyjzG22071309
    [2]LAN Tao, DING Min, ZHUANG Jinzhao, QIN Guangchong, QIAO Haiyang, YAO Yaming, ZHANG Yan. Influence of Local High Temperature on Pushover Analysis of Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 93-97. doi: 10.13204/j.gyjzg20042008
    [3]CHEN Yong, JIAN Bin, LIU Chong. RESEARCH ON SEISMIC PERFORMANCES OF FIRST ASEISMIC GRADE FRAMES WITH PSRC VIERENDEEL TRUSS TRANSFER STORIES UNDER MAIN-AFTER SHOCKS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 45-52,105. doi: 10.13204/j.gyjzG20071008
    [4]HUANG Xin, LI Yi, ZHU Xudong, HU Xueying, LYU Yang. DAMAGE ANALYSIS OF HIGH-RISE BUILDING STRUCTURES WITH ASYMMETRIC VERTICAL SETBACKS UNDER RARE EARTHQUAKE ACTION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 79-84. doi: 10.13204/j.gyjz202006013
    [6]Shu Xingping Liu Zelong Lu Beirong Yao Yao, . NONLINEAR DYNAMIC ELASTO-PLASTIC TIME HISTORY ANALYSIS OF PREFABRICATED STEEL FRAME STRUCTURE WITH INCLINED SUPPORT JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(10): 1-6. doi: 10.13204/j.gyjz201510001
    [7]Li Hongxing, Gao Wei, Zhao Chunlian, Li Guoqiang, Dong Lühe, Sun Feifei. APPLICATION OF BUCKLING-RESTRAINED BRACES ( BRB) IN RC FRAME-BENT MAIN BUILDING STRUCTURE FOR LARGE THERMAL POWER PLANTS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 98-102.
    [8]Zhang Teng, Wu Xiaohan, He Jinsheng. ELASTO-PLASTIC TIME HISTORY ANALYSIS OF STRUCTURE AND CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 90-94. doi: 10.13204/j.gyjz201406021
    [9]Huang Wei, Xue Weiwei, Zhang Chenghua, Li Yunzhang. PUSHOVER ANALYSIS OF SOIL-PILE-ECO-COMPOSITE WALLS INTERACTION SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(12): 79-83. doi: 10.13204/j.gyjz201112018
    [10]Song Yuanqi, Wang Xiaogang, Wen Yanfeng, Liang Yuanzhong, Gong Huguang. ELASTOPLASTIC TIME-HISTORY ANALYSIS OF FRAME-BENT STRUCTURE FOR MAIN MILL BUILDING OF LARGE-SCALE THERMAL POWER PLANT[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(1): 51-54. doi: 10.13204/j.gyjz201001014
    [11]Bai Xiaohong, Bai Guoliang. EXPERIMENTAL AND THEORETICAL STUDY ON THE DEFORMATION PROPERTY OF THE FRAME-BENT STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 31-35. doi: 10.13204/j.gyjz201007010
    [12]Yang Youfa, Feng Zhongjie, Li Yuanchu. PUSH-OVER ANALYSIS OF THE HIGH-RISE FRAME-CORE WALL STRUCTURES WITH STRENGTHENED STOREYS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 35-39. doi: 10.13204/j.gyjz200910011
    [13]Yin Jiang, Yi Weijian. THE MODAL PUSHOVER ANALYSIS WITH THE CONSIDERATION OF THE VERTICAL SEISMIC EFFECTS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 39-46. doi: 10.13204/j.gyjz200905008
    [14]Xin Li, Liang Xingwen. DIRECT DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF HIGH-RISE BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 6-10,53. doi: 10.13204/j.gyjz200807002
    [15]Yan Weiming, Zhang Chunke, Peng Lingyun, Yao Yi. A NEW TYPE OF SHEARING LEAD DAMPER AND ITS APPLICATION IN MILL BUILDINGS FOR A THERMAL POWER PLANT[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 41-44,49. doi: 10.13204/j.gyjz200807010
    [16]Rong Qiang, Cheng Wenrang. ELASTOPLASTIC TIME-HISTORY ANALYSIS OF RUBBER-FRICTION PARALLEL ISOLATION SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 47-49,46. doi: 10.13204/j.gyjz200702012
    [17]Wang Xin-ling, Yang Jian-zhong, Zhang Yan, Bi Shu-ping. THE PUSHOVER ANALYSIS AND OPTIMIZATION OF ENERGY DISSIPATION MECHANISM FOR CHEVRON BRACING COMPOUND STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 42-46. doi: 10.13204/j.gyjz200711012
    [18]Wan Li, Jian Bin. PUSHOVER ANALYSIS OF FRAME STRUCTURES WITH UNBONDED PRESTRESSED FLOOR[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 22-27,21. doi: 10.13204/j.gyjz200702006
    [19]Qin Cong-lv, Qian Lei, Gan Gang, Zhang Ai-hui. SEISMIC DESIGN OF AN APARTMENT BUILDING WITH BOTTOM WEAK STORY[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 36-38. doi: 10.13204/j.gyjz200610011
    [20]Duan Hongxia, Li Zhengliang. RESEARCH ON DESIGN MEASURES FOR SEISMIC RESISTANCE OF RC MEGA-FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 22-26. doi: 10.13204/j.gyjz200601008
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.6 %FULLTEXT: 5.6 %META: 90.5 %META: 90.5 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %[]: 0.4 %[]: 0.4 %上海: 1.3 %上海: 1.3 %北京: 2.6 %北京: 2.6 %南京: 3.0 %南京: 3.0 %厦门: 1.3 %厦门: 1.3 %台北: 0.4 %台北: 0.4 %合肥: 0.9 %合肥: 0.9 %呼和浩特: 0.4 %呼和浩特: 0.4 %天津: 0.4 %天津: 0.4 %宁波: 0.4 %宁波: 0.4 %常德: 0.4 %常德: 0.4 %张家口: 1.7 %张家口: 1.7 %成都: 0.9 %成都: 0.9 %扬州: 0.4 %扬州: 0.4 %昆明: 0.9 %昆明: 0.9 %晋中: 0.9 %晋中: 0.9 %杭州: 2.2 %杭州: 2.2 %武汉: 2.2 %武汉: 2.2 %沈阳: 0.9 %沈阳: 0.9 %济南: 1.7 %济南: 1.7 %海口: 0.4 %海口: 0.4 %湖州: 0.9 %湖州: 0.9 %漯河: 0.4 %漯河: 0.4 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.9 %秦皇岛: 0.9 %芒廷维尤: 47.6 %芒廷维尤: 47.6 %衢州: 0.9 %衢州: 0.9 %西宁: 7.4 %西宁: 7.4 %西安: 0.9 %西安: 0.9 %贵阳: 1.7 %贵阳: 1.7 %赣州: 0.9 %赣州: 0.9 %赤峰: 0.4 %赤峰: 0.4 %运城: 3.9 %运城: 3.9 %连云港: 0.4 %连云港: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.3 %郑州: 1.3 %重庆: 1.7 %重庆: 1.7 %金昌: 0.4 %金昌: 0.4 %长沙: 0.9 %长沙: 0.9 %马尼拉: 0.4 %马尼拉: 0.4 %黑河: 0.4 %黑河: 0.4 %其他[]上海北京南京厦门台北合肥呼和浩特天津宁波常德张家口成都扬州昆明晋中杭州武汉沈阳济南海口湖州漯河福州秦皇岛芒廷维尤衢州西宁西安贵阳赣州赤峰运城连云港邯郸郑州重庆金昌长沙马尼拉黑河

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (209) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return