Citation: | CHEN Yan, YAN Bo, WANG Qingshan, LU Jun, LIANG Ming. Real-Time Online Prediction Method for Structural Strength of Transmission Towers[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 246-252,241. doi: 10.13204/j.gyjzG22072603 |
[1] |
YANG F L, LI Q, YANG J B, et al. Assessment on the stress state and the maintenance schemes of the transmission tower above goaf of coal mine[J]. Engineering Failure Analysis, 2013, 31:236-247.
|
[2] |
姜太荣, 张翼虎, 王永泉, 等. 不均匀沉降条件下输电塔线体系安全性研究[J]. 施工技术, 2018, 47(4):132-136.
|
[3] |
田家栋. 不均匀沉降下干字型输电塔倒塌分析与倾斜监测方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
|
[4] |
刘正伟, 底尚尚, 张丽娟, 等. 基础水平位移对输电杆塔受力影响及限值研究[J]. 山东大学学报(工学版), 2022, 52(2):1-8.
|
[5] |
陆佳政, 刘纯, 陈红冬, 等. 500 kV输电塔线覆冰有限元计算[J]. 高电压计算, 2007, 33(10):167-169.
|
[6] |
刘磊. 基于不同覆冰状态的输电塔线体系倒塔力学特性研究[D]. 西安:西安工程大学, 2015.
|
[7] |
毕承财. 输电塔线耦合体系中杆塔的强度研究[D]. 重庆:重庆大学, 2015.
|
[8] |
PRASAD R N, SAMUEL K G M, MOHAN S J, et al. Studies on failure of transmission line towers in testing[J]. Engineering Structures, 2012, 35:55-70.
|
[9] |
WANG J, XIONG X F, ZHOU N, et al. Early warning method for transmission line galloping based on SVM and AdaBoost bilevel classifiers[J]. IET Generation, Transmission & Distribution, 2016, 10(14):3499-3507.
|
[10] |
MOU Z Y, YAN B, LIN X, et al. Prediction method for galloping features of transmission lines based on FEM and machine learning[J]. Cold Regions Science and Technology, 2020, 173:103031.
|
[11] |
MOU Z Y, YAN B, YANG H X, et al. Prediction model for aerodynamic coefficients of iced quad bundle conductors based on machine learning method[J]. Royal Society Open Science, 2021, 8(10):210568.
|
[12] |
文楠, 严波, 林翔, 等. 基于BP神经网络的导线脱冰跳跃高度预测模型[J]. 振动与冲击, 2021, 40(1):199-204.
|
[13] |
WEN N, YAN B, MOU Z Y, et al. Prediction models for dynamic response parameters after ice-shedding based on machine learning method[J]. Electric Power Systems Research, 2022, 202:107580.
|
[14] |
眭嘉里, 严波, 林翔, 等. 基于BP神经网络的悬垂绝缘子串风偏角预测模型[J]. 重庆大学学报, 2021, 44(8):114-124.
|
[15] |
LIANG L, LIU M, MARTIN C, et al. A deep learning approach to estimate stress distribution:a fast and accurate surrogate of finite-element analysis[J]. Journal of The Royal Society Interface, 2018, 15(138):20170844.
|
[16] |
NIE Z, JIANG H, KARA L B. Stress field prediction in cantilevered structures using convolutional neural networks[J]. Journal of Computing and Information Science in Engineering, 2020, 20(1):1-16.
|
[17] |
SHI C, ZHAO Q L, LI M, et al. Precise orbit determination of Beidou Satellites with precise positioning[J]. Science China (Earth Sciences), 2012, 55(7):1079-1086.
|
[18] |
丛犁, 杜秋实, 窦增, 等. 基于北斗RTK技术的电力铁塔变形监测技术研究[J]. 电力信息与通信技术, 2015, 13(12):24-29.
|
[19] |
黄红兵, 张辰, 刘俊毅, 等. 基于北斗定位技术的输电杆塔运行状态监测研究与应用[J]. 数字通信世界, 2018(5):51-53.
|
[20] |
武立平, 马维青, 杨海飞, 等. 北斗监测数据在输电线路杆塔的位移和形变方面的监测与研究[J]. 计算机测量与控制, 2020, 28(3):79-83.
|
[21] |
欧郁强, 张飞, 郭小龙, 等. 北斗通讯在智能电网状态监测中的应用[J]. 中国电力, 2015, 48(12):39-42.
|
[22] |
电力规划设计总院. 重覆冰架空输电线路设计技术规:DL/T 5440-2020[S].中国计划出版社, 2020.
|