Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Gu Wei, Xiong Xueyu. THEORECTICAL INVESTIGATION OF EXTERNALLY PRESTRESSED STRUCTURES IN ELASTIC PHASE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 7-11,15. doi: 10.13204/j.gyjz200407002
Citation: SONG Shuxiang, ZHENG Chao, YANG Kun, FENG Deluan. Experimental Study on Strength and Dry-Wet Cycle Characteristics of Coastally Soft Soil in South China Cemented by Sand and Cement[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 190-197. doi: 10.13204/j.gyjzG22072006

Experimental Study on Strength and Dry-Wet Cycle Characteristics of Coastally Soft Soil in South China Cemented by Sand and Cement

doi: 10.13204/j.gyjzG22072006
  • Received Date: 2022-07-20
    Available Online: 2024-02-28
  • To study the influence of sand on the strength and dry-wet cycle characteristics of cementedly coastal soft clay in South China, a series of cementedly coastal soft clay samples in South China with different contents and sizes of sand were prepared, and unconfined compression strength tests, dry-wet cycle tests, scanning electron microscopy tests and X-Ray diffraction tests were conducted in seawater and fresh water. The test results indicated that the unconfined compression strength of sand-mixed clay-cemented samples cured for 7, 14, and 28 days increased with the increase of the sand content, and the strength cured for 28 days increased with the decrease of the size of sand particles; the maximum loss ratio of mass for sand-mixed clay-cemented samples was up to 61%. The properties of strength deterioration subjected to dry-wet cycles improved with the increase of the sand content and the decrease of the size of sand particles. Moreover, the resistant capability for dry-wet cycling of samples in the fresh water was obviously better than that in the seawater. The results by SEM and XRD tests showed that the reinforced mechanisms of sand-mixed cemented soft clay in South China mainly reflected the following:1)the modulus replacement effect (replacement of low modulus soft clay with the high modulus sand);2)the interfacial effect between sand and clay-cemented matrixes;and 3) the blocking and isolating effect for crack.
  • [1]
    张庆华,孙银磊,汤连生,等.南沙淤泥质土微观结构及力学特征的试验研究[J].工业建筑,2021,51(1):110-117.
    [2]
    林本海,杨树庄,朱伯善,等.广东省地质构造与岩土工程基本特征[J].岩石力学与工程学报,2006,25(增刊2):3337-3346.
    [3]
    陈晓平,黄国怡,梁志松.珠江三角洲软土特性研究[J].岩石力学与工程学报,2003,22(1):137-137.
    [4]
    ZHOU H Z, ZHENG G, YU X X, et al. Bearing capacity and failure mechanism of ground improved by deep mixed columns[J]. Journal of Zhejiang University:Science A (Applied Physics & Engineering), 2018, 19(4):266-276.
    [5]
    徐超,董天林,叶观宝.水泥土搅拌桩法在连云港海相软土地基中的应用[J].岩土力学,2006,27(3):495-498.
    [6]
    颜恩锋,孙友宏,许振华,等.深层水泥土搅拌桩在基坑支护中的应用[J].岩土力学,2003,24(增刊1):90-93.
    [7]
    万志辉,戴国亮,龚维明,等.海水环境下钙质砂水泥土加固体的微观侵蚀机制试验研究[J].岩土力学, 2021, 42(7):1871-1882.
    [8]
    MITCHELL J K, EL JACK S A. The fabric of soil:cement and its formation[J]. Clays and Clay Minerals, 1966, 14(1):297-305.
    [9]
    梁仁旺,张明,白晓红.水泥土的力学性能试验研究[J].岩土力学,2001,22(2):211-213.
    [10]
    杜娟,刘冰洋,申彤彤,等.有机质浸染砂水泥土的力学特性及本构关系[J].农业工程学报,2020,36(2):140-147.
    [11]
    储诚富,邵俐,刘松玉,等.有机质含量对水泥土强度影响的室内定量研究[J].岩土力学,2006,27(9):1613-1616.
    [12]
    李平日,黄镇国,张仲英,等.珠江三角洲的第四纪地层[J].地理科学,1984, 4(2):133-142.
    [13]
    SUBRAMANIAN S, KHAN Q, KU T. Effect of sand on the stiffness characteristics of cement-stabilized clay[J/OL]. Construction and Building Materials, 2020, 264[2022-07-20]. https://doi.org/10.1016/j.conbuildmat.2020.120192Get rights and content.
    [14]
    XU M, LIU L, DENG Y, et al. Influence of sand incorporation on unconfined compression strength of cement-based stabilized soft clay[J]. Soils and Foundations, 2021, 61(1):1132-1141.
    [15]
    CHIAN S C, CHIM Y Q, WONG J W. Influence of sand impurities in cement-treated clays[J]. Géotechnique, 2016, 67(1):1-11.
    [16]
    王海龙,申向东,王萧萧,等.水泥砂浆复合土力学性能及微观结构的试验研究[J].岩石力学与工程学报,2012, 31(增刊1):3264-3269.
    [17]
    刘鑫,范晓秋,洪宝宁.水泥砂浆固化土三轴试验研究[J].岩土力学,2011, 32(6):1676-1682.
    [18]
    范晓秋,洪宝宁,胡昕,等.水泥砂浆固化土物理力学特性试验研究[J].岩土工程学报, 2008,30(4):605-610.
    [19]
    DU J, LIU B, WANG Z, et al. Dynamic behavior of cement-stabilized organic-matter-disseminated sand under cyclic triaxial condition[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 147[2022-07-20]. https://doi.org/10.1016/j.soildyn.2021.106777.
    [20]
    CHANDU A S, RAO G. Strength and durability characteristics of red soil stabilized with foundry sand and cement[J]. Arabian Journal for Science and Engineering, 2021, 46(5):5171-5178.
    [21]
    中华人民共和国住房和城乡建设部.建筑地基基础设计规范:GB 50007-2011[S]. 北京:中国建筑工业出版社, 2011.
    [22]
    潘林有.温州软土水泥土强度特性规律的室内试验研究[J].岩石力学与工程学报,2003,22(5):863-863.
    [23]
    梁仕华,曾伟华.干湿循环条件下水泥粉煤灰固化南沙淤泥土试验研究[J].工业建筑,2018,48(7):83-86

    ,43.
    [24]
    中华人民共和国住房和城乡建设部.土工试验方法标准:GB/T 50123-2019[S].北京:中国建筑工业出版社, 2019.
    [25]
    ZHAO X K, DONG Q, CHEN X Q, et al. Meso-cracking characteristics of rubberized cement-stabilized aggregate by discrete element method[J/OL]. Journal of Cleaner Production, 2021, 316[2022-07-20]. https://doi.org/10.1016/j.jclepro.2021.128374.
    [26]
    CRISTELO N, CUNHA V, ANTÓNIO T, et al. Influence of fibre reinforcement on the post-cracking behavior of a cement-stabilized sandy-clay subjected to indirect tensile stress[J]. Construction and Building Materials, 2017, 138:163-173.
    [27]
    XING H, YANG X, CHAO X, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology, 2009, 103:33-38.
    [28]
    BALONIS M, LOTHENBACH B, SAOUT G L, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement & Concrete Research, 2010, 40(7):1009-1022.
  • Relative Articles

    [1]SHI Baocun, CHEN Jingya, ZHU Runyu, SUN Rui, WANG Fangwei. Research on Effect of Polymer Repair Agent on Self-Healing Performance of Concrete Cracks Based on Different Humidity Environments[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 154-160,172. doi: 10.13204/j.gyjzG22063018
    [2]QIN Dongyang, LIU Haifeng, ZHU Lichen, CHE Jialing, YANG Weiwu. Research on the Performance of Desert Sand Concrete Under Dry-Wet Cycles with Sulfate Erosion[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 207-213,220. doi: 10.13204/j.gyjzG23053001
    [3]WANG Bukang, JIA Cangqin, WANG Guihe, ZHANG Haonan. Study on Cementation Effect of Tailing Sand by Magnesium Oxide Combined with Microorganism or by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 79-83. doi: 10.13204/j.gyjzG21022609
    [4]DONG Wei, ZHOU Menghu, HANG Meiyan, XUE Gang. Deterioration Law of Aeolian Sand Concrete Under Carbonation and Dry-Wet Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 194-198,206. doi: 10.13204/j.gyjzG22022206
    [5]LIU Shengwei, ZHAO Jianchang, ZHANG Jiawei. EXPERIMENTAL RESEARCH ON TENSILE PROPERTIES OF CFRP SHEETS IN SULFATE ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 172-176. doi: 10.13204/j.gyjzG201908060007
    [6]MA Yingchang, LIU Haifeng, ZHANG Minghu. EFFECTS OF DESERT SAND REPLACEMENT RATE AND FLY ASH CONTENT ON THE COMPRESSIVE STRENGTH OF CONCRETE UNDER LOW TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 81-87,80. doi: 10.13204/j.gyjz202005014
    [7]XU Lina, NIU Lei, ZHANG Ying, WANG Jun. EFFECT OF FREEZE-THAW CYCLING ON THE MECHANICAL PROPERTIES OF FIBER-REINFORCED CEMENTED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 109-113. doi: 10.13204/j.gyjz202003018
    [8]XU Lina, NIU Lei, ZHANG Ting, WANG Yabo. EXPERIMENTAL RESEARTH ON THE UNCONFINED COMPRESSION STRENGTH CHARACTERISTICS OF BASALT FIBER AND CEMENT STABILIZED RIVERBED SILT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 109-112. doi: 10.13204/j.gyjz202002016
    [12]Andres Quiros Zhang Shuai Cheng Xiaohui, . STUDY OF THE MICP INJECTION IN UNSATURATED SANDY SOILS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 28-30. doi: 10.13204/j.gyjz201507006
    [13]Wei Bingxu, Liu Bin, Ouyang Yunqing, Liu Xiong. THE EFFECT OF DRYING-WETTING CYCLES ON EXPANSIVE SOIL STRUCTURE AND ITS INDUCED VARIATIONS IN STRENGTH[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 99-103. doi: 10.13204/j.gyjz201508018
    [14]Liu Wei, Xie Youjun, Dong Biqin. STUDY OF THE RESISTANCE TO SULFATE ATTACH OF CONCRETE MADE WITH DREDGED MARINE SAND[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 131-135.
    [15]Yang Chenbin, Zha Fusheng, Cui Kerui. EFFECT OF CYCLIC WETTING AND DRYING ON THE ENGINEERING PROPERTIES OF STABILIZED EXPANSIVE SOILS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 98-102. doi: 10.13204/j.gyjz201201019
    [16]Xu Zhaoyang, Zhang Li. RESEARCH ON EFFECT OF MICROBES ON SOME ENGINEERING PROPERTIES OF SILT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 60-63,38. doi: 10.13204/j.gyjz200903018
    [17]Zhou Liping, Shen Xiangdong, Bai Zhongqiang. THE EXPERIMENTAL STUDY ON CHANGE IN PROPERTY OF CEMENT SOIL BY ADDED ADDITIVES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 74-78. doi: 10.13204/j.gyjz200907021
    [18]Zhang Da-jie, Tian Xiao-feng, Hou Hao-bo, Liu Hao, Tan Shi-kang. EXPERIMENTAL RESEARCH ON TAKING STABILIZED OVERWETTED SOIL AS ROADBED FILLER[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 38-40. doi: 10.13204/j.gyjz200607009
    [19]Ji Yongsheng, Yuan Yingshu. TRANSPORT PROCESS OF CHLORIDE IN CONCRETE UNDER WET AND DRY CYCLES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(12): 16-19,23. doi: 10.13204/j.gyjz200612005
    [20]Zhou Min, Hou Hao-bo, Li Zhi-wei. ENGINEERING PROPERTIES OF DREDGED SEDIMENT MODIFIED BY HAS STABILIZER[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 35-37,44. doi: 10.13204/j.gyjz200607008
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.9 %FULLTEXT: 14.9 %META: 85.1 %META: 85.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.6 %其他: 20.6 %北京: 2.9 %北京: 2.9 %台州: 2.9 %台州: 2.9 %天津: 2.9 %天津: 2.9 %宣城: 1.5 %宣城: 1.5 %常德: 4.4 %常德: 4.4 %广州: 4.4 %广州: 4.4 %廊坊: 1.5 %廊坊: 1.5 %张家口: 1.5 %张家口: 1.5 %昆明: 2.9 %昆明: 2.9 %晋城: 2.9 %晋城: 2.9 %温州: 1.5 %温州: 1.5 %漯河: 2.9 %漯河: 2.9 %芒廷维尤: 29.4 %芒廷维尤: 29.4 %芝加哥: 1.5 %芝加哥: 1.5 %衢州: 1.5 %衢州: 1.5 %西宁: 2.9 %西宁: 2.9 %运城: 5.9 %运城: 5.9 %遵义: 1.5 %遵义: 1.5 %郑州: 4.4 %郑州: 4.4 %其他北京台州天津宣城常德广州廊坊张家口昆明晋城温州漯河芒廷维尤芝加哥衢州西宁运城遵义郑州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (59) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return