Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WU Qinghua. Analysis on Construction Responses of Rock Around Parallel Subway Tunnels in Inclined Stratification Rocks[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 29-35,87. doi: 10.13204/j.gyjzG22071706
Citation: WU Qinghua. Analysis on Construction Responses of Rock Around Parallel Subway Tunnels in Inclined Stratification Rocks[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 29-35,87. doi: 10.13204/j.gyjzG22071706

Analysis on Construction Responses of Rock Around Parallel Subway Tunnels in Inclined Stratification Rocks

doi: 10.13204/j.gyjzG22071706
  • Received Date: 2022-07-17
  • Both bedding structure of rock and tunnel clearance are sensitive factors to the response of surrounding rock during tunnelling of adjacent tunnels, which easily cause deformation instability of surrounding rock and ground subsidence. Taking dip angles as the research variable, the construction response laws of the rock around tunnels were studied by the finite element software FLAC3D against the background for separate subway tunnels under construction in inclined stratification rocks, which was verified by comparison with the construction monitoring data. The results indicated that the conspicuousness of asymmetric deformation for rock around the tunnel increased first and decreased then with the increase of dip angles, while the vertical settlement trough of the ground gradually changed from the unimodal V-type to the bimodal W-type and tended to be obvious, and the width coefficient of the settlement trough decreased first and increase then. The characteristics of stress release of surrounding rock in the range of 0.75 times the diameter of tunnels was obvious and reached the peak value when the dip angle was 30°, but decreased nonlinearly with the increase of the radial depth. The discontinuous distribution characteristics of the stress field in surrounding rock on both sides of the stratification tended to be conspicuouse with the decrease of dip angle. In addition, the rock mass on both sides of the stratification was prone to conjugate shear failure at the intersection of the structural plane and the side wall outlines of tunnels, where might be reinforced locally during construction.
  • [1]
    扈萍,马梁,李萌,等.小净距隧道后行洞掘进对先行洞变形的影响[J].济南大学学报(自然科学版), 2022(3):1-6.
    [2]
    赵斌,敖芃,李文涛.不同埋深下小净距隧道最优净距的探讨[J].铁道建筑,2013, 474(8):68-71.
    [3]
    陈锐,陈高生,杨静,等.层理岩体小净距地铁隧道暗挖施工响应数值分析[J].现代隧道技术,2021,58(增刊1):232-239.
    [4]
    赵景彭.地层倾角对层状岩体大断面隧道稳定性研究[J].铁道建筑,2011,451(9):58-61.
    [5]
    段隆臣,闫丰,蒲有林,等.考虑层理的六盘山隧道围岩稳定性研究[J].铁道建筑,2013,474(8):59-61.
    [6]
    何长江,冯君,江南,等.层理特性对顺层隧道破坏模式及稳定影响分析[J].地下空间与工程学报,2020,16(2):599-607.
    [7]
    钟志彬,邓荣贵,孙怡,等.隧道近距大层理硬脆性围岩破裂机理[J].中国公路学报, 2018, 31(5):106-116.
    [8]
    LIN Q, CAO P, LIU Y, et al. Mechanical behavior of a jointed rock mass with a circular hole under compression-shear loading:experimental and numerical studies[J/OL]. Theoretical and Applied Fracture Mechanics, 2021, 114[2022-07-17]. https://doi.org/10.1016/j.tafmec.2021.102998Get rights and content.
    [9]
    HUANG F, WU C Z, NI P P, et al. Experimental analysis of progressive failure behavior of rock tunnel with a fault zone using non-contact DIC technique[J/OL]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132[2022-07-17]. https://doi.org/10.1016/j.ijrmms.2020.104355.
    [10]
    张志明,张宇,戴勇,等.层理裂隙密集发育岩体隧道掘进断面成形特征统计分析[J].铁道建筑技术,2019(6):12-16.
    [11]
    AKSOY C O, OĞUL K, TOPAL I, et al. Reducing deformation effect of tunnel with non-deformable support system by jointed rock mass model[J]. Tunnelling and underground space technology, 2014, 40:218-227.
    [12]
    杨忠民,高永涛,吴顺川,等.层理岩体中纵向间距对连拱隧道稳定性的影响[J].中国公路学报,2018,31(10):167-176.
    [13]
    杨忠民,张玉芳,李健,等.软弱围岩层理性质对隧道塌方范围影响研究[J].中国安全生产科学技术,2020,16(12):143-149.
    [14]
    KHAN I A, VENKATESH K, SRIVASTAVA R K. Elasto-plastic finite element analysis of twin tunnels:A comparison of excavation in intact and jointed rock mass[J]. Materials Today:Proceedings, 2021(47):6728-6733.
    [15]
    李赤谋,吴忠仕,褚存,等.层状层理对软岩隧道的变形影响及对策研究[J].中外公路,2020,40(6):219-222.
    [16]
    张慧梅,陈敏,孟祥振,等.不同倾角层理岩体损伤模型及力学特性[J].哈尔滨工程大学学报,2022(6):1-8.
    [17]
    KUMAR A, TIWARI G. Jackknife based generalized resampling reliability approach for rock slopes and tunnels stability analyses with limited data:Theory and applications[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022,14(3):714-730.
    [18]
    李老三.铁路标准断面隧道地层倾角效应研究[J].石家庄铁道大学学报(自然科学版),2021,34(1):63-68,75.
    [19]
    刘学增,刘文艺,索超峰.地层倾角对公路隧道围岩塌落拱影响分析[J].现代隧道技术,2014,51(6):73-77.
    [20]
    王贵君,任杨茹.层理特性对隧道围岩稳定性影响的研究[J].河北工业大学学报,2017,46(1):103-107.
    [21]
    袁铁,李畅,申志军,等.层理对泥岩隧道稳定性影响分析[J].公路,2020,65(2):288-294.
    [22]
    刘邦,朱哲明,周磊,等.贯穿隧道的层理对隧道稳定性的影响[J].煤炭学报,2018,43(5):1296-1304.
    [23]
    ZHAO D, HE Q, JI Q, et al. Similar model test of a mudstone-interbedded-sandstone-bedding rock tunnel[J/OL]. Tunnelling and Underground Space Technology, 2023, 140[2023-10-10]. https://doi.org/10.1016/j.tust.2023.105299.
    [24]
    袁冉,熊维林,何毅,等.复合成层地层浅埋隧道掘进地表沉降规律分析[J].西南交通大学学报:2022, 57(5):1063-1069.
    [25]
    邵珠山,赵鑫.基于隧道施工诱发地表沉降随机介质理论预测模型的拓展[J].长安大学学报(自然科学版),2021,41(6):73-81.
    [26]
    PECK R B. Deep excavations and tunneling in soft ground[C]//Proc. 7th ICSMFE, 1969. 1969:225-290.
    [27]
    ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. New York:Chapman and Hall Other Phys,1986.
    [28]
    韩煊,李宁, STANDING J R. Peck公式在我国隧道施工地面变形预测中的适用性分析[J].岩土力学,2007(1):23-28,35.
    [29]
    马可栓.盾构施工引起地基移动与近邻建筑保护研究[D].武汉:华中科技大学, 2008.
  • Relative Articles

    [1]ZHU Yangui. Discrete Element Method Analysis on Shear Responses of Mixed Soil During Anisotropic Consolidation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 167-173. doi: 10.3724/j.gyjzG22062701
    [2]LI Hao, WANG Dayang, ZHAO Dongzhuo, XIE Zhen. Shaking Table Tests and Numerical Simulation Study on the Centroid Eccentricity of the Center of Mass of Full-Frame-Supported High-Rise Building Structure with Thick Plate Transfer[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 141-149. doi: 10.3724/j.gyjzG23032007
    [3]CAI Qingchi, XIE Hankang. A NUMERICAL METHOD FOR DETERMINING PRE-CONSOLIDATION PRESSURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 164-167,187. doi: 10.13204/j.gyjzG20061201
    [4]TANG Kangsheng, WU Yan, SHENG Tao, CHEN Xiaoming. EXPERIMENTAL RESEARCH ON BASE ISOLATION MODEL OF OVER-TRACK HIGH-RISE BUILDINGS USING A NEW TYPE OF BEARING[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 76-81,163. doi: 10.13204/j.gyjzG20052403
    [5]ZHAN Tao. RESEARCH ON FORECASTS FOR ULTIMATE DISPLACEMENT OF TUNNELS BASED ON THE DE-GP ALGORITHM IN CONSTRUCTION PROCESS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 184-188,133. doi: 10.13204/j.gyjzG20081201
    [7]Huo Runke, Li Maoda, Li Jing, Wang Qiang, Yan Jirui. NUMERICAL SIMULATION AND ANALYSIS OF TUNNEL CONSTRUCTION PROCESS OF UNSYMMETRICAL TUNNEL IN SOFT ROCK[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 95-100. doi: 10.13204/j.gyjz201502021
    [8]Yang Ping. STABILITY ANALYSIS AND REINFORCEMENT TECHNOLOGY RESEARCH OF CHICKEN CLAW TRENCH HIGH ROCKFILL EMBANKMENT IN MOUNTAINOUS AREAS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 166-173. doi: 10.13204/j.gyjz201505035
    [9]Liu Junwei, Tang Hongxia, Pi Jingkun, Shang Wenchang. CONSTRUCTION MONITORING ANALYSIS OF AN DEEP EXCAVATION OF A SUBWAY STATION[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 121-125.
    [10]Shao Guoxin. THE DESIGN AND CONSTRUCTION OF FREEZING METHOD OF CONNECTED AISLE FOR THE METRO SHIELD TUNNELS IN NINGBO SOFT SOIL STRATUM[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 148-152. doi: 10.13204/j.gyjz201311033
    [11]Zhao Zhihong. RESEARCH AND DISCUSSION ON THE ARCHITECTURAL DESIGN OF XI' AN No. 3 METRO LINE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 171-174. doi: 10.13204/j.gyjz201207030
    [12]Wu Zhanrui, Qi Taiyue, Tang Jincai. OPTIMIZATION ANALYSIS OF CONSTRUCTION METHOD FOR SHALLOW-BURIED TUNNEL WITH LARGE SECTION[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 102-107. doi: 10.13204/j.gyjz201208022
    [13]Jia Bo, Liu Ganbin, Xu Li, Shi Xiangfeng. INFLUENCE OF SHAFT CONSTRUCTION IN METRO TUNNEL ON ADJACENT BUILDINGS AND REINFORCEMENT[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 121-125. doi: 10.13204/j.gyjz201108029
    [14]Zhou Haiying, Chen Tingguo, Li Lixin. STUDY ON JOINT BENDING STIFFNESS AND INFLUENCING FACTORS OF METRO SHIELD TUNNELING LINING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 59-61,122. doi: 10.13204/j.gyjz201007016
    [15]Zhou Haiying, Chen Tingguo, Li Lixin. STUDY ON JOINT LOAD TEST OF METRO SHIELD TUNNELING LINING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 79-83. doi: 10.13204/j.gyjz201004018
    [16]Fan Dewei, Li Dayong, Zhang Xuechen. ANALYSIS OF VERTICAL DISPLACEMENT AND INNER FORCES IN BURIED PIPELINES CAUSED BY METRO TUNNELING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 85-89. doi: 10.13204/j.gyjz200909018
    [17]Zhang Huaijing, Li Weixun. ANALYSIS OF INFLUENCE OF SUBWAY STATION TRANSFER CHANNEL EXCAVATION ON EXISTING PILE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 81-85. doi: 10.13204/j.gyjz200911019
    [18]Zhao Dazhou, Wang Qingxiang, Guan Ping. RESEARCH ON LOAD-BEARING CAPACITY OF STEEL TUBULAR COLUMNS FILLED WITH STEEL-REINFORCED HIGH-STRENGTHCONCRETE SUBJECTED TO COMPRESSION AND BENDING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 84-85,93. doi: 10.13204/j.gyjz200509023
  • Cited by

    Periodical cited type(1)

    1. 娄欣荣. 异形封堵墙钢支撑施工方案选择与基坑变形控制研究. 建筑施工. 2024(02): 215-217 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.9 %FULLTEXT: 15.9 %META: 83.5 %META: 83.5 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.9 %其他: 18.9 %上海: 4.3 %上海: 4.3 %北京: 2.4 %北京: 2.4 %南京: 3.0 %南京: 3.0 %南昌: 1.8 %南昌: 1.8 %南通: 1.2 %南通: 1.2 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 0.6 %天津: 0.6 %宜春: 0.6 %宜春: 0.6 %宣城: 0.6 %宣城: 0.6 %常德: 1.2 %常德: 1.2 %延安: 0.6 %延安: 0.6 %张家口: 1.8 %张家口: 1.8 %徐州: 1.2 %徐州: 1.2 %成都: 1.2 %成都: 1.2 %扬州: 3.7 %扬州: 3.7 %晋城: 0.6 %晋城: 0.6 %杭州: 0.6 %杭州: 0.6 %武汉: 1.2 %武汉: 1.2 %沈阳: 0.6 %沈阳: 0.6 %沧州: 0.6 %沧州: 0.6 %洛阳: 0.6 %洛阳: 0.6 %济南: 4.3 %济南: 4.3 %温州: 1.2 %温州: 1.2 %湖州: 1.2 %湖州: 1.2 %漯河: 1.8 %漯河: 1.8 %福州: 0.6 %福州: 0.6 %秦皇岛: 0.6 %秦皇岛: 0.6 %芒廷维尤: 18.3 %芒廷维尤: 18.3 %荆州: 0.6 %荆州: 0.6 %莫斯科: 0.6 %莫斯科: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 11.6 %西宁: 11.6 %西安: 1.2 %西安: 1.2 %达州: 1.2 %达州: 1.2 %运城: 2.4 %运城: 2.4 %郑州: 3.0 %郑州: 3.0 %重庆: 0.6 %重庆: 0.6 %长沙: 0.6 %长沙: 0.6 %青岛: 0.6 %青岛: 0.6 %香港: 0.6 %香港: 0.6 %其他上海北京南京南昌南通嘉兴天津宜春宣城常德延安张家口徐州成都扬州晋城杭州武汉沈阳沧州洛阳济南温州湖州漯河福州秦皇岛芒廷维尤荆州莫斯科衢州西宁西安达州运城郑州重庆长沙青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (136) PDF downloads(1) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return