Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LüJiangen, Wang Ronghui. DETERIORATION EXAMINATION AND REINFORCEMENT OF CFST TIED ARCH BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 158-161. doi: 10.13204/j.gyjz201208031
Citation: LU Peng, ZHAO Tiansong, WANG Jian, ZHAO Lei, CHANG Haosong, ZHENG Yun. Review on Damage Identification and Health Monitoring of Steel Structures Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 22-27. doi: 10.13204/j.gyjzG22071401

Review on Damage Identification and Health Monitoring of Steel Structures Based on Computer Vision

doi: 10.13204/j.gyjzG22071401
  • Received Date: 2022-07-14
    Available Online: 2023-03-22
  • Steel structures suffer from surface damage all the time due to their material properties and insufficient daily management. With the development of digital information technology, computer vision techniques have become key means in damage identification and health monitoring of steel structures. This paper presented the advances of computer vision techniques in damage and health monitoring of steel structures and discussed the identification techniques for surface corrosion damage, weld joint damage, and bolt connection damage of steel structures and their health monitoring. Moreover, it also predicted the development trends of damage identification and health monitoring techniques based on computer vision for steel structures.
  • [1]
    仇智, 罗亚冉. 钢结构建筑的发展现状及前景分析[J]. 产业与科技论坛, 2011, 10(2):55-56.
    [2]
    张兴斌, 杨昕光, 潘蓉,等. 土木工程智能化监测评估系统的理论研究及应用[J]. 工业建筑, 2021, 51(12):102-106.
    [3]
    WANG N, ZHAO Q, LI S, et al. Damage classification for masonry historic structures using convolutional neural networks based on still images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12):1073-1089.
    [4]
    周奎, 王琦, 刘卫东, 等. 土木工程结构健康监测的研究进展综述[J]. 工业建筑, 2009, 39(3):96-102.
    [5]
    LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-44.
    [6]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998,86(11):2278-324.
    [7]
    WU S, ZHONG S, LIU Y. Deep residual learning for image steganalysis[J]. Multimedia Tools and Applications, 2017, 77(9):10437-10453.
    [8]
    ATHA D J, JAHANSHAHI M R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection[J]. Structural Health Monitoring, 2017, 17(5):1110-1128.
    [9]
    AHUJA S K, SHUKLA M K. A survey of computer vision based corrosion detection approaches, information and communication technology for intelligent systems (ICTIS 2017):Volume 2[M]. 2018:55-63.
    [10]
    CHOI K Y, KIM S S. Morphological analysis and classification of types of surface corrosion damage by digital image processing[J]. Corrosion Science, 2005, 47(1):1-15.
    [11]
    JAHANSHAHI M R, MASRI S F. Parametric performance evaluation of wavelet-based corrosion detection algorithms for condition assessment of civil infrastructure systems[J]. Journal of Computing in Civil Engineering, 2013, 27(4):345-357.
    [12]
    CHEN P H, SHEN H K, LEI C Y, et al. Fourier-transform-based method for automated steel bridge coating defect recognition[J]. Procedia Engineering, 2011, 14:470-476.
    [13]
    CHEN P H, SHEN H K, LEI C Y, et al. Support-vector-machine-based method for automated steel bridge rust assessment[J]. Automation in Construction, 2012, 23:9-19.
    [14]
    XU J, GUI C, HAN Q. Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(10):1160-1174.
    [15]
    DONG C, LI L, YAN J, et al. Pixel-level fatigue crack segmentation in large-scale images of steel structures using an encoder-decoder network[J/OL]. Sensors (Basel), 2021, 21(12).https://doi.org/10.3390/s21124135.
    [16]
    QIAO W, MA B, LIU Q, et al. Computer vision-based bridge damage detection using deep convolutional networks with expectation maximum attention module[J/OL]. Sensors (Basel), 2021, 21(3).https://doi.org/10.3390/s21030824.
    [17]
    XU Y, BAO Y, CHEN J, et al. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images[J]. Structural Health Monitoring, 2018, 18(3):653-674.
    [18]
    XU Y, LI S, ZHANG D, et al. Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images[J/OL]. Structural Control and Health Monitoring, 2018, 25(2).https://doi.org/10.1002/stc.2075.
    [19]
    DUNG C V, SEKIYA H, HIRANO S, et al. A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks[J]. Automation in Construction, 2019, 102:217-229.
    [20]
    RAMANA L, CHOI W, CHA Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J].Structural Health Monitoring, 2018, 18(2):422-434.
    [21]
    RAMANA L, CHOI W, CHA Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J]. Structural Health Monitoring, 2018, 18(2):422-434.
    [22]
    ZHOU J, HUO L, SONG G, et al. Deep learning-based visual inspection for the delayed brittle fracture of high-strength bolts in long-span steel bridges[C]//2019 International Conference on Image and Video Processing, and Artificial Intelligence, 2019.
    [23]
    ZHOU J, HUO L, WANG H. Computer vision-based detection for delayed fracture of bolts in steel bridges[J]. Journal of Sensors, 2021, 2021:1-12.
    [24]
    雷素素, 刘宇飞, 段先军, 等. 复杂大跨空间钢结构施工过程综合监测技术研究[J]. 工程力学, 2018, 35(12):203-211.
    [25]
    TENG S, CHEN G, LIU G, et al. Modal strain energy-based structural damage detection using convolutional neural networks[J]. Applied Sciences, 2019, 9(16):366-371.
    [26]
    刘宇飞, 辛克贵, 樊健生, 等. 环境激励下结构模态参数识别方法综述[J]. 工程力学, 2014, 31(4):46-53.
    [27]
    卓德兵, 曹晖. 基于小波时频图与轻量级卷积神经网络的螺栓连接损伤识别[J]. 工程力学, 2021, 38(9):228-238.
    [28]
    PAL J, SIKDAR S, BANERJEE S. A deep-learning approach for health monitoring of a steel frame structure with bolted connections[J/OL]. Structural Control and Health Monitoring, 2021, 29(2).https://doi.org/10.1002/stc.2873.
    [29]
    PEREZ-PEREZ Y, GOLPARVAR-FARD M, EL-RAYES K. Semantic and geometric labeling for enhanced 3D point cloud segmentation[C]//Proceedings of the 2016 Construction Research Congress, U.S.:2016:2542-2552.
    [30]
    GUO M, SUN M, PAN D, et al. High-precision detection method for large and complex steel structures based on global registration algorithm and automatic point cloud generation[J/OL]. Measurement, 2021, 172.https://doi.org/10. 1016/j.measurement.2020.108765.
    [31]
    魏思航, 刘宇飞, 刘家豪. 基于无人机与数字图像法的混凝土结构表面裂缝检测应用研究[J]. 特种结构, 2020, 37(5):107-111.
    [32]
    CHEN Q, WEN X, WU F, et al. Defect detection and health monitoring of steel structure based on UAV integrated with image processing system[J/OL]. Journal of Physics:Conference Series, 2019, 1176.https://doi.org/10.1088/1742-6596/1176/5/052074.
    [33]
    HAN Q, ZHAO N, XU J. Recognition and location of steel structure surface corrosion based on unmanned aerial vehicle images[J]. Journal of Civil Structural Health Monitoring, 2021, 11(5):1375-1392.
    [34]
    HAN Q, LIU X, XU J. Detection and location of steel structure surface cracks based on unmanned aerial vehicle images[J/OL]. Journal of Building Engineering, 2022, 50.https://doi.org/10.1016/j.jobe.2022.104098.
    [35]
    金明辉.公路勘测设计[M]. 北京:人民交通出版社, 2014.
    [36]
    HUSSAIN M, CHEN D, CHENG A, et al. Change detection from remotely sensed images:From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80:91-106. 2209000020800606林拥军.fbd
  • Relative Articles

    [1]HUANG Hui, LU Sifang, ZHANG Xiang, JIA Bin, LU Yonggang. Anti-implosion Performances of Steel Pipes Strengthened with CFRP Sheets[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 211-215. doi: 10.13204/j.gyjzG20031209
    [2]LI Xiaozhong, ZHANG Sumei. Axial Compression Performance and Mechanical Property of CFST Columns Reinforced with Outer Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 122-130. doi: 10.13204/j.gyjzG22072710
    [3]ZHANG Zhengtao, REN Qingxin, REN Debin, YANG Juncai. STUDY ON AXIAL COMPRESSION PERFORMANCES OF CONCRETE-ENCASED CONCRETE-FILLED STEEL-TUBE STUB COLUMNS STRENGTHENED WITH EXTERNAL STEEL FRAMES AFTER EXPOSURE TO FIRE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 187-193. doi: 10.13204/j.gyjzG20011609
    [4]Zheng Hengzhong, Deng Jun, Li Hui. EXPERIMENTAL STUDY OF AXIAL COMPRESSION PROPERTIES OF CONCRETE-FILLED STEEL TUBES WRAPPED WITH BFRP[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 131-134.
    [5]Miao Jijun, Liu Wenchao, Liu Yanchun, Zhao Yuliang. APPRAISAL OF CRACKS ON CONCRETE SHORT COLUMNS OF A FRAME AND RESEARCH ON RETROFITTING MEASURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 136-139. doi: 10.13204/j.gyjz201311030
    [6]Huang Junjie, Su Qian, Zhou Heng, Zheng Jianbin. REINFORCEMENT DESIGN OF THE DISEASE PILE FOUNDATION OF EXISTING BRIDGE IN KARST AREA AND NUMERICAL ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 166-170. doi: 10.13204/j.gyjz201207029
    [7]Cui Xiguang, Liu Zhi, Liu Xiang, Wang Yongjia. EXPERIMENTAL STUDY ON THE END ANCHORAGE OF THE CONCRETE MEMBERS STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 125-128. doi: 10.13204/j.gyjz201107027
    [8]Yu lin, Wang Fengxia, Jiang Linhua, Li Zhonghua. RESEARCH ON ADHESIVE PROPERTY OF CONCRETE STREGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(10): 103-105,110. doi: 10.13204/j.gyjz201010023
    [9]Shu Hongbo, Zheng Jianjun, Zhang Shaohua. QUALIFICATION AND REINFORCEMENT OF CONCRETE STRUCTURES AFTER FIRE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 25-27. doi: 10.13204/j.gyjz200908007
    [10]Bu Liangtao, Chen Jun, Li Hongbing. STUDY ON DETECTION AND STRENGTHENING TECHNOLOGY OF CONCRETE STRUCTURE AFTER FIRE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 117-119,116. doi: 10.13204/j.gyjz200906028
    [11]Bu Liangtao, Peng Chao, Gao Wei. DESIGN AND CONSTRUCTION OF SELF COMPACTING CONCRETE IN REINFORCING A 130m HIGH RC SMOKESTACK[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 113-116. doi: 10.13204/j.gyjz200806029
    [12]Deng Changgen, Zhu Wenmei. SIMPLIFIED BUCKLING ANALYSIS OF STEEL COMPRESSION MEMBERS STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 106-108122. doi: 10.13204/j.gyjz200803028
    [13]Xu Jin, Cai Jian. RESEARCH ON THE BEHAVIOUR OF REINFORCED CONCRETE COLUMN STRENGTHENED BY CIRCULAR STEEL JACKETING SUBJECTED TO ECCENTRIC LOADING[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 14-17. doi: 10.13204/j.gyjz200708004
    [14]Zhang Weixi, Chen Ping, Zhao Dong, Mao Xiaofei. ANALYSIS AND STRENGTHENING OF STRUCTURAL DEFECTS OF THE SOUTHWESTERN BIG TEMPLE IN ANCIENT CITY OF GAOCHANG[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 86-88,106. doi: 10.13204/j.gyjz200708022
    [15]Ding Ya-hong, Zeng Xian-tao, Wang Xing-guo. THE EXPERIMENTAL STUDY OF CONCRETE BEAMS STRENGTHENED WITH NEAR-SURFACE MOUNTED CFRP[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 89-91. doi: 10.13204/j.gyjz200607024
    [16]Zhang Ke, Ye Lieping, Yue Qingrui. EXPERIMENTAL STUDY ON FLEXURAL FATIGUE BEHAVIOR OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 13-19. doi: 10.13204/j.gyjz200508004
    [17]Wang Peiqiong, Tang Yuechao, Mao Zhongyi. RESEARCH ON LONGITUDINAL CRACK DAMAGE TO CONCRETE-FILLED STEEL TUBE STRUCTURE AND ITS STRENGTHENING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 96-97,109. doi: 10.13204/j.gyjz200502026
    [18]Hu Cheng, Fu Xiubing, Sun Baojun, Li Yanhe. METHOD AND PRACTICE OF REINFORCED CONCRETE COLUMN STRENGTHENED BY PRESTRESSING STAY[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 85-87. doi: 10.13204/j.gyjz200402025
    [19]Li Yuan, Zhang Xinghu, Zhang Baoyin, . FATIGUE EXPERIMENTAL STUDY ON CONCRETE BEAM STRENGTHENED WITH CARBON FIBER REINFORCED PLASTIC SHEET[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 22-24,48. doi: 10.13204/j.gyjz200404006
    [20]Li Rong, Teng Jinguang, Yue Qingrui. A NEW TECHNIQUE FOR STRENGTHENING CONCRETE STRUCTURES——NEAR-SURFACE MOUNTED FRP REINFORCEMENT[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 5-10. doi: 10.13204/j.gyjz200404002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.2 %FULLTEXT: 13.2 %META: 84.9 %META: 84.9 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.7 %其他: 6.7 %其他: 0.7 %其他: 0.7 %东莞: 3.0 %东莞: 3.0 %北京: 5.9 %北京: 5.9 %南京: 0.7 %南京: 0.7 %合肥: 1.5 %合肥: 1.5 %嘉兴: 0.7 %嘉兴: 0.7 %天津: 0.7 %天津: 0.7 %太原: 1.5 %太原: 1.5 %宿州: 0.7 %宿州: 0.7 %岳阳: 0.7 %岳阳: 0.7 %常德: 0.7 %常德: 0.7 %张家口: 6.7 %张家口: 6.7 %德阳: 0.7 %德阳: 0.7 %成都: 2.2 %成都: 2.2 %扬州: 1.5 %扬州: 1.5 %无锡: 0.7 %无锡: 0.7 %昆明: 2.2 %昆明: 2.2 %晋城: 0.7 %晋城: 0.7 %济南: 3.0 %济南: 3.0 %深圳: 2.2 %深圳: 2.2 %温州: 0.7 %温州: 0.7 %漯河: 1.5 %漯河: 1.5 %芒廷维尤: 11.9 %芒廷维尤: 11.9 %苏州: 1.5 %苏州: 1.5 %西宁: 25.2 %西宁: 25.2 %西安: 3.0 %西安: 3.0 %贵阳: 1.5 %贵阳: 1.5 %运城: 5.9 %运城: 5.9 %郑州: 2.2 %郑州: 2.2 %重庆: 0.7 %重庆: 0.7 %长沙: 1.5 %长沙: 1.5 %马鞍山: 0.7 %马鞍山: 0.7 %其他其他东莞北京南京合肥嘉兴天津太原宿州岳阳常德张家口德阳成都扬州无锡昆明晋城济南深圳温州漯河芒廷维尤苏州西宁西安贵阳运城郑州重庆长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (213) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return