Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Li Yi, Zhao Wen, Yan Yunqi. METHOD OF CONTINUAL ANALYSIS FOR SYSTEM RELIABILITY[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 26-28,39. doi: 10.13204/j.gyjz200510009
Citation: RONG Hua, JING Yuxiang, WANG Yulin, GENG Yan. Effects of Elevated Temperature and Irradiation on Performance Degradation of Concrete Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 133-138. doi: 10.13204/j.gyjzG22062009

Effects of Elevated Temperature and Irradiation on Performance Degradation of Concrete Structures

doi: 10.13204/j.gyjzG22062009
  • Received Date: 2022-06-20
  • To ensure the safe and reliable operation of nuclear power plants (NPPs) during their extended service lives, the performance of reinforced concrete structures in NPPs under long-term irradiation is quite important. A comprehensive framework of models was developed to predict the various properties and deformation of nuclear-irradiated concrete. The GSC model and the Mori-Tanaka model were used to characterize the mechanical and transport properties of concrete with multiple phases and multi-scale internal structures. The damage to the concrete’s mechanical properties resulting from irradiation and elevated temperature was estimated by using a composite damage mechanics approach. The transport properties in degraded concrete were calculated using multi-group diffusion equations, considering the temperature gradient and the damage induced by irradiation. Finally, all models were combined and implemented as a coupled radio-thermo-mechanical analysis to predict the long-term mechanical and transport responses of concrete. The work represents a comprehensive framework that can be used as user-defined material models combined with commercial finite element software products for future application of numerical analysis of concrete and reinforced concrete structures in nuclear power plants.
  • [1]
    HILSDORF H K, KROPP J, KOCH H J. The effects of nuclear radiation on the mechanical properties of concrete[C]//Proceedings of the Douglas McHenry International Symposium on Concrete and Concrete Structures. Mexico City:1978.
    [2]
    SALOMONI V A, MAJORANA C E, POMARO B, et al. Macroscale and mesoscale analysis of concrete as a multiphase material for biological shields against nuclear radiation[J]. Int. J. Numer. Anal. Meth. Geomech., 2014, 38:518-535. DOI: 10.1002/nag.2222.
    [3]
    POMARO B. A review on radiation damage in concrete for nuclear facilities:from experiments to modeling[J]. Modelling and Simulation in Engineering, 2016, 2016:1-10.
    [4]
    ROSSEEL T M, MARUYAMA I, PAPE Y L, et al. Review of the current state of knowledge on the effects of radiation on concrete[J]. Journal of Advanced Concrete Technology, 2016,14(7):368-383.
    [5]
    KONTANI O, ICHIKAWA Y, ISHIZAWA A, et al. Irradiation effects on concrete structures in infrastructure systems for nuclear energy[M]. Chichester, UK:John Wiley & Sons, Ltd, 2014:459-473.
    [6]
    FIELD K G, REMEC I, LE PAPE Y. Radiation effects in concrete for nuclear power plants-part I:quantification of radiation exposure and radiation effects[J]. Nuclear Engineering and Design, 2015, 282:126-143.
    [7]
    MARUYAMA I, KONTANI O, TAKIZAWA M, et al. Development of soundness assessment procedure for concrete members affected by neutron and gamma-ray irradiation[J]. Journal of Advanced Concrete Technology, 2017, 15:440-523.
    [8]
    POMARO B, SALOMONI V A, GRAMEGNA F, et al. Radiation damage evaluation on concrete within a facility for selective production of exotic species (SPES Project), Italy[J]. Journal of Hazardous Materials, 2011,194:169-177.
    [9]
    POMARO B, SALOMONI V A, GRAMEGNA F, et al. Radiation damage evaluation on concrete shielding for nuclear physics experiments[J]. Annals of Solid and Structural Mechanics, 2011, 2(2/3/4):123-142.
    [10]
    KHMUROVSKA Y, ŠTEMBERK P, FEKETE T, et al. Numerical analysis of VVER-440/213 concrete biological shield under normal operation[J]. Nuclear Engineering and Design, 2019, 350:58-66.
    [11]
    SAKLANI N, BANWAT G, SPENCER B, et al. Damage development in neutron-irradiated concrete in a test reactor:Hygro-thermal and mechanical simulations[J]. Cement and Concrete Research, 2021, 142. DOI: 10.1016/j.cemconres.2020.106349.
    [12]
    LOWINSKA-KLUGE A, PISZORA P. Effect of gamma irradiation on cement composites observed with XRD and SEM methods in the range of radiation dose 0-1409 MGy[J]. ACTA Physica Polonica-A, 2008, 114(2):399-411.
    [13]
    VODÁK F, TRTÍK K, SOPKO V, et al. Effect of γ-irradiation on strength of concrete for nuclear-safety structures[J]. Cement and Concrete Research, 2005, 35(7):1447-1451.
    [14]
    RODRIGUEZ E T, HUNNICUTT W A, MONDAL P, et al. Examination of gamma-irradiated calcium silicate hydrates. part I:chemical-structural properties[J]. Journal of the American Ceramic Society, 2020, 103(1):558-568.
    [15]
    HUNNICUTT W, RODRIGUEZ E T, MONDAL P, et al. Examination of Gamma-irradiated Calcium Silicate hydrates. part II:mechanical properties[J]. Journal of Advanced Concrete Technology, 2020, 18(10):558-570.
    [16]
    JING Y, XI Y. Theoretical modeling of the effects of neutron irradiation on properties of concrete[J]. Journal of Engineering Mechanics, ASCE, 2017, 143(12):1-14.
    [17]
    JING Y, XI Y. Long-term neutron radiation levels in distressed concrete biological shielding walls[J]. Journal of Hazardous Materials, 2019, 363:376-384.
    [18]
    JING Y, XI Y. Modeling long-term distribution of fast and thermal neutron fluence in degraded concrete biological shielding walls[J]. Construction and Building Materials, 2021, 292. DOI: 10.1016/j.conbuildmat.2021.123379.
    [19]
    BENVENISTE Y. A new approach to the application of Mori-Tanaka's theory in composite materials[J]. Mechanics of Materials, 1987, 6(2):147-157.
    [20]
    MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5):571-574.
    [21]
    CHRISTENSEN R M. Mechanics of composite materials[M]. New York:Dover Publications, 2005.
    [22]
    WANG S X, WANG L M, EWING R C. Irradiation-induced amorphization:effects of temperature, ion mass, cascade size, and dose rate[J]. Physical Review B, 2000, 63(2).DOI: 10.1103/PhysRevB.63.024105.
    [23]
    SHULTIS J K, FAW R E. Radiation shielding[M]. Upper Saddle River, NJ:Prentice Hall PTR, 1996.
  • Relative Articles

    [1]ZHOU Wansen, ZHONG Jufang, ZHANG Yanhong, HU Xiao. Research on Time-Frequency Parameter Prediction Models of Ground Motion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105
    [2]SUN Xiaoyun, HUANG Linjie, ZENG Bin, SHI Zheng, XIE Qin. Analysis of Seismic Performance of Self-Centering Concrete Frame Structures Characterized by Low Prestressing and Slope Friction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 38-45. doi: 10.3724/j.gyjzG24091003
    [3]SUI Weining, MA Yong, YANG Haitao, WU Jinguo. Experimental Study on Mechanical Properties of a New Connection Joint Between PC External Wall Panel and Steel Frame with Frictional Energy Dissipation[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 109-117. doi: 10.13204/j.gyjzG22011501
    [4]LIU Hang, LI Mu, YANG Xuezhong, HAN Mingjie, TIAN Yuji. Experimental Research on Seismic Performance of Self-centering Prefabricated RC Frame Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 65-73. doi: 10.13204/j.gyjzG21062601
    [5]HUANG Linjie, ZENG Bin, ZHOU Zhen, ZHANG Wenqing, SANG Chenxu, ZHANG Jingru. Influence of Joint Stiffness After Gap Opening on Seismic Performance of Self-Centering Prestressed Concrete Frames with Variable Friction Dampers[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 88-93. doi: 10.13204/j.gyjzG22072916
    [6]CHANG Zhaoqun, LIU Boquan, HAN Meng, BAI Tao, XING Guohua, WANG Shuangbing. DESIGN AND NUMERICAL ANALYSIS OF AN INNOVATIVE SELF-CENTERING FRICTION DAMPER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 138-142,221. doi: 10.13204/j.gyjzG20080402
    [7]HUANG Ming, LIU Ye, DING Yi, LYU Qingfang. EXPERIMENTAL RESEARCH ON SELF-CENTERING CLB ROCKING WALL EQUIPPED WITH CFD[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 40-46,61. doi: 10.13204/j.gyjzG21042509
    [8]HAN Tengfei, XU Gang, LI Liang, LI Xiaodong, XI Xiangdong. RESEARCH AND APPLICATION OF SHEAR RESISTANCE OF FRICTION CONNECTION WITH HIGH STRENGTH BOLTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 133-136. doi: 10.13204/j.gyjzG201909120001
    [9]HUANG, Linjie, ZHOU, Zhen. INVESTIGATION ON INFLUENCE OF INFILL WALLS ON HIGHER MODE EFFECT OF SELF-CENTERING PRESTRESSED CONCRETE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 34-39. doi: 10.13204/j.gyjz202001007
    [10]MENG, Shaoping, CAI, Xiaoning. RESEARCH PROGRESS ON PRESTRESSED SELF-RESETTING CONCRETE FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 1-6. doi: 10.13204/j.gyjz202001001
    [11]MA, Junfeng, ZHOU, Zhen. HYSTERICAL BEHAVIOR OF AN UPPER-BOTTOM FRICTION DAMPER SELF-CENTERING PRESTRESSED CONCRETE BEAM-COLUMN CONNECTION WITH HIDDEN CORBEL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 16-21,124. doi: 10.13204/j.gyjz202001004
    [14]Liu Pengfei, Zhao Qilin, Jiang Kebin, Gao Hesheng. THEORETIC RESEARCH ON FRICTION LOSS OF PRE-STRESS IN LARGE-SPAN CONCRETE BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 64-67. doi: 10.13204/j.gyjz201110016
    [15]Wu Yingjun, Chen Zhihua, LüQing. RESEARCH AND APPLICATION OF ROLL CABLE-STRUT JOINT IN SUSPEND-DOME[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 27-29,34. doi: 10.13204/j.gyjz201008007
    [16]Wu Zhuanqin, Zeng Zhaobo, Shang Renjie, Liu Jingliang. EXPERIMENTAL STUDY ON FRICTION COEFFICIENT OF RETARD-BONDED PRESTRESSING STRAND[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 20-23. doi: 10.13204/j.gyjz200811006
    [17]Cai Jiangyong. IMPROVING SUGGESTION ON CALCULATION METHOD OF FRICTION LOSS IN PRESTRESSED CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 94-95,75. doi: 10.13204/j.gyjz200404029
  • Cited by

    Periodical cited type(1)

    1. 张文超,李帅. 结构抗震时程分析输入地震波选择方法研究. 砖瓦. 2024(07): 73-75 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 84.0 %META: 84.0 %PDF: 1.5 %PDF: 1.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %China: 1.5 %China: 1.5 %上海: 0.5 %上海: 0.5 %保定: 0.5 %保定: 0.5 %信阳: 0.5 %信阳: 0.5 %北京: 4.1 %北京: 4.1 %南通: 0.5 %南通: 0.5 %南阳: 0.5 %南阳: 0.5 %厦门: 0.5 %厦门: 0.5 %台州: 0.5 %台州: 0.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %大庆: 0.5 %大庆: 0.5 %天津: 0.5 %天津: 0.5 %太原: 0.5 %太原: 0.5 %宁波: 0.5 %宁波: 0.5 %宿州: 1.0 %宿州: 1.0 %常德: 0.5 %常德: 0.5 %廊坊: 1.0 %廊坊: 1.0 %延安: 0.5 %延安: 0.5 %张家口: 5.2 %张家口: 5.2 %无锡: 1.5 %无锡: 1.5 %昆明: 0.5 %昆明: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.5 %杭州: 1.5 %桂林: 0.5 %桂林: 0.5 %沈阳: 0.5 %沈阳: 0.5 %深圳: 0.5 %深圳: 0.5 %潍坊: 0.5 %潍坊: 0.5 %芒廷维尤: 11.9 %芒廷维尤: 11.9 %芝加哥: 3.1 %芝加哥: 3.1 %苏州: 0.5 %苏州: 0.5 %蚌埠: 1.0 %蚌埠: 1.0 %西宁: 34.5 %西宁: 34.5 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 5.7 %运城: 5.7 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.5 %郑州: 1.5 %金华: 0.5 %金华: 0.5 %长沙: 0.5 %长沙: 0.5 %阳泉: 2.1 %阳泉: 2.1 %黄冈: 0.5 %黄冈: 0.5 %其他China上海保定信阳北京南通南阳厦门台州呼和浩特嘉兴大庆天津太原宁波宿州常德廊坊延安张家口无锡昆明晋城朝阳杭州桂林沈阳深圳潍坊芒廷维尤芝加哥苏州蚌埠西宁西安贵阳运城邯郸郑州金华长沙阳泉黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(5) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return