Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 52 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
GU Hui, RONG Hua, LI Jiwa, FAN Xinglang, YAO Jitao, CHENG Zhengjie. Review of Chloride Corrosion Durability Monitoring of Marine Structures in Nuclear Power Plants[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 16-21,15. doi: 10.13204/j.gyjzG22061712
Citation: GU Hui, RONG Hua, LI Jiwa, FAN Xinglang, YAO Jitao, CHENG Zhengjie. Review of Chloride Corrosion Durability Monitoring of Marine Structures in Nuclear Power Plants[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 16-21,15. doi: 10.13204/j.gyjzG22061712

Review of Chloride Corrosion Durability Monitoring of Marine Structures in Nuclear Power Plants

doi: 10.13204/j.gyjzG22061712
  • Received Date: 2022-06-17
    Available Online: 2023-03-22
  • Durability deterioration of marine structures in nuclear power plants causes the reinforcement corrosion and may lead to concrete cracking, delamination, and spalling, which poses a great threat to the safety and durability of structures. The consideration of anti-corrosion importance and necessity of concrete are seriously inadequate in the design, construction, and operation of existing nuclear power plants. The anti-corrosion countermeasures are not controlled in a sufficiently strict manner, and the durability problem is severe, especially the corrosion durability of chlorides. If reliable monitoring sensors could be embedded or installed in the structure, the structural damage data can be uploaded, analyzed, and processed in real time to achieve early warnings and life prediction, which is of great significance to ensure the normal operation of the aging management and life extension period of the nuclear power plants. This paper summarized the typical durability problems of marine structures in nuclear power plants and the common durability monitoring methods for the most serious chloride corrosion in marine structures for an accurate grasp of the current research status of the durability problems and monitoring of marine structures in nuclear power plants. It may provide some reference for research on durability warning and diagnosis.
  • loading
  • [1]
    国家能源局. 核电厂海工构筑物设计规范:NB/T 25002-2011[S]. 北京:中国电力行业核电标准化委员会,2011.
    [2]
    中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准:GB/T 50476-2019[S]. 北京:中国建筑工业出版社,2019.
    [3]
    中华人民共和国交通部. 海港工程混凝土结构防腐蚀技术规范:JTJ 275-2000[S]. 北京:中国建筑工业出版社,2000.
    [4]
    申罡, 乔培鹏. 核电站海工构筑物的防腐研究[C]//第六届全国腐蚀大会. 银川,2011.
    [5]
    国家能源局. 核电厂海工构筑物防腐蚀施工及验收规范:NB/T 25002-2011[S]. 北京:中国电力行业核电标准化委员会,2011.
    [6]
    ALEXANDER M, BEUSHAUSEN H. Durability, service life prediction, and modelling for reinforced concrete structures-review and critique[J]. Cement and Concrete Research, 2019, 122:17-29.
    [7]
    金伟良, 赵羽习. 混凝土结构耐久性[M]. 北京:科学出版社,2014.
    [8]
    American Concrete Institute Committee. Guide to durable concrete:ACI 201.2R-2016[S]. Farmington Hills, 2016.
    [9]
    HOU B R. The cost of corrosion in China[M]. Beijing:Science Press, 2019.
    [10]
    BASHEER P A M, BASHEER L, CLELAND D J. Surface treatment for concrete:assessment method and reported performance[J]. Construction and building Materials, 1997(11(7/8)):413-429.
    [11]
    刘瑞雪. 干湿循环下混凝土的氯离子渗透性能及涂层防护作用研究[D]. 北京:中国矿业大学,2014.
    [12]
    国家核安全局. 核动力厂定期安全审查:HAD 103/11-2006[S]. 北京:中国电力行业核电标准化委员会,2006.
    [13]
    国家核安全局. 核动力厂老化管理:HAD 103/12-2012[S]. 北京:中国电力行业核电标准化委员会,2012.
    [14]
    IAEA Nuclear Energy Series. Ageing management of concrete structures in nuclear power plants[S].Vienna:International Atomic Energy Agency, 2016.
    [15]
    侯维红, 冷延明, 侯春萍. 核电站海工构筑物结构耐久性及防腐技术的解决方案[C]//第一届中国国际核电厂建构筑物可靠性与抗震性能评价技术交流论坛. 北京,2016.
    [16]
    牛荻涛. 复杂环境混凝土耐久性[M]. 北京:科学出版社,2022.
    [17]
    陈富强. 基于纳米探针结构的氯离子在线检测系统研究[D]. 天津:天津大学,2017.
    [18]
    陶德彪, 蒋林华, 金鸣,等. 银/氯化银电极用于监测混凝土中氯离子含量的研究[J]. 材料导报, 2017, 31(20):101-106.
    [19]
    陶德彪, 蒋林华, 金鸣,等. 基于混凝土环境的氯离子选择性电极的性能研究[J]. 混凝土, 2016(7):69-73.
    [20]
    MIGUEL A C, ESTANISLAO V, MAR L. Embeddabel Ag/AgCl sensors for in-situ monitoring choloride contents in concrete[J]. Cement and Concrete Reaearch, 1996, 8(26):1157-1161.
    [21]
    JIN M, JIANG L H, ZHU Q. Monitoring chloride ion penetration in concrete with different mineral admixtures based on embedded chloride ion selective electrodes[J]. Construction and Building Materials, 2017, 143:1-15.
    [22]
    MONTEMOR M F, SIMOES A M P, FERREIRA M G S. Chloride-induced corrosion on reinforcing steel:from the fundamentals to the monitoring techniques[J]. Cement and Concrete Composites, 2003, 5(24):491-502.
    [23]
    MONTEMOR M F, ALVES J H, SIMES A M, et al. Muptiprobe chloride sensor for in situ monitoring of reinforced concrete structures[J]. Cement and Concrete Composites, 2006, 3(28):233-236.
    [24]
    ATKINS C P, CARTER M A, SCANTLEBURY J D. Sources of error in using silver/silver chloride electrodes to monitor chloride activity in concrete[J]. Cement and Concrete Research, 2001, 31(8):1207-1211.
    [25]
    ATKINS C P, SCANTLEBURY J D, NEDWELL P J, et al. Monitoring chloride concentrations in hardened cement pastes using ion selective electrodes[J]. Cement and Concrete Research, 1996, 26(2):319-324.
    [26]
    JIN M, JIANG L, TAO D, et al. Characterization of Ag/AgCl electrode manufactured by immersion in sodium hypochloride acid for monitoring chloride content in concrete[J]. Construction and Building Materials, 2016, 122:310-319.
    [27]
    JIN M, XU J, JIANG L, et al. Investigation on the performance characteristics of chloride selective electrode in concrete[J]. Ionics, 2015, 21(10):2981-2992.
    [28]
    张鹤, 赵炜璇. 全固态Ag/AgCl氯离子传感器在混凝土模拟孔溶液中的电化学性能[J]. 混凝土, 2014(12):39-42.
    [29]
    张剑. 混凝土中氯离子浓度的原位监测技术[D]. 哈尔滨:哈尔滨工业大学, 2010.
    [30]
    王翠翠. 使用环境对混凝土氯离子传感器工作性能的影响[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [31]
    唐福建, 秦疆伟, 李宏男. 一种用于监测混凝土中氯离子浓度的法珀腔式光纤传感器:CN202021538469.8[P]. 2021.
    [32]
    WANG J N. A microfluidic long-period fiber grating sensor platform for chloride ion concentration measurement[J]. Sensors (Basel), 2011, 11(9):8550-8568.
    [33]
    苏耿华. 基于光纤传感器的混凝土氯离子浓度检测技术研究[D]. 天津:天津大学, 2017.
    [34]
    SAMER K A K B, CATHY C C L, SUN T, et al. Chloride ion optical sensing using a long period grating pair[J]. Sensors and Actuators A:Physical, 2008, 141(2):390-395.
    [35]
    JIN M, JIANG L, LU M, et al. Monitoring chloride ion penetration in concrete structure based on the conductivity of graphene/cement composite[J]. Construction and Building Materials, 2017, 136:394-404.
    [36]
    GLASS G K, BUENFELD N. Chloride induced corrosion of steel in concrete[J]. Progress in Structural Engineering and Materials, 2000, 4(2):448-458.
    [37]
    Sensortec阳极梯[EB/OL]. http://www.sensortec.de/.
    [38]
    Corrowatch预埋式锈蚀监测传感器[EB/OL]. http://www.forcetechnology.com/.
    [39]
    Corrosion Control Ltd梯形探头[EB/OL].https://www.bacgroup.com/.
    [40]
    汤雁冰, 王胜年, 范志宏等. 国外混凝土结构耐久性监测传感器在国内工程中的适用性[J]. 水运工程, 2016(3):19-22.
    [41]
    RAMANI V, KUANG K S C. Monitoring chloride ingress in concrete using an imaging probe sensor with sacrificial metal foil[J]. Automation in Construction, 2020, 117:103-260.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return