Citation: | HU Wenzhe, CUI Chuang, WANG Hao, ZHANG Qinghua. Multi-Scale Finite Element Model Update Method Based on a Multi-Objective Evolutionary Algorithm[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 161-167. doi: 10.13204/j.gyjzG22061306 |
[1] |
张皓, 李东升, 李宏男. 有限元模型修正研究进展:从线性到非线性[J]. 力学进展, 2019, 49(1):542-575.
|
[2] |
刘信, 何沛祥. 基于权函数的桥梁结构有限元模型修正[J]. 工业建筑, 2018, 48(2):95-99
,68.
|
[3] |
《中国公路学报》编辑部.中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2):1-97.
|
[4] |
马印平, 刘永健, 刘江. 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32(11):51-61.
|
[5] |
方志, 张国刚, 唐盛华, 等. 混凝土斜拉桥动力有限元建模与模型修正[J]. 中国公路学报, 2013, 26(3):77-85.
|
[6] |
WANG D, TAN D, LIU L. Particle swarm optimization algorithm:an overview[J]. Soft Computing, 2018, 22(2):387-408.
|
[7] |
金正凯, 卜一之, 李俊, 等. 基于Kriging方法的正交异性钢桥面板大焊脚焊缝抗疲劳构造参数设计[J]. 中外公路, 2017, 37(6):166-170.
|
[8] |
唐煜, 岳杰, 华旭刚. 基于人工蜂群算法的桥梁有限元模型局部刚度修正[J]. 铁道科学与工程学报, 2021, 18(9):2333-2343.
|
[9] |
HA-SANÇEBI O, DUMLUPINAR T. Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks[J]. Computers and Structures, 2013, 119:1-11.
|
[10] |
王蕾, 郁胜, 李宾宾, 等. 基于径向基神经网络的桥梁有限元模型修正[J]. 土木工程学报, 2012, 45(增刊2):11-15.
|
[11] |
ZHANG QING, LI HUI. MOEA/D:A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
|
[12] |
马永杰, 陈敏, 龚影, 等. 动态多目标优化进化算法研究进展[J]. 自动化学报, 2020, 46(11):2302-2318.
|
[13] |
彭涛, 田仲初, 张建仁, 等. 基于多目标优化的混凝土斜拉桥静动力有限元模型修正[J]. 振动与冲击, 2018, 37(21):108-116.
|
[14] |
贾布裕, 余晓琳, 颜全胜, 等. 基于Kriging改进响应面法的桥梁地震动力可靠度研究[J]. 振动与冲击, 2013, 32(16):82-87
,105.
|
[15] |
SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design:survey and recom-mendations[J]. Engineering with Computers, 2001, 17(2):129-150.
|
[16] |
CHEN R, LI K, YAO X. Dynamic multiobjectives optimization with a changing number of objectives[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(1):157-171.
|
[17] |
MING F, GONG W, ZHEN H, et al. A simple two-stage evolutionary algorithm for constrained multi-objective optimization[J/OL]. Knowledge-Based Systems, 2021, 228[2022-06-13].https://www.sciencedirect.com/science/article/abs/pii/S0950705121005256.
|
[18] |
LIU R, LI N, WANG F. Noisy multi-objective optimization algorithm based on gaussian model and regularity model[J/OL]. Swarm and Evolutionary Computation, 2022, 69[2022-06-13].https://www.sciencedirect.com/science/article/abs/pii/S2210650221001899.
|
[19] |
GAO Y, YE J, YUAN Z Y, et al. Optimization strategy for curing ultra-thick composite laminates based on multi-objective genetic algorithm[J/OL]. Composites Communications, 2022, 31[2022-06-13]. https://www.sciencedirect.com/science/article/abs/pii/S2452213922000572.
|
[20] |
BROCKHOFF D, WAGNER T, TRAUTMANN H. 2 indicator-based multiobjective search[J]. Evolutionary Computation, 2015, 23(3):369-395.
|
[21] |
LIM D, JIN Y, ONG Y S, et al. Generalizing surrogate-assisted evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2009, 14(3):329-355.
|