Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Liu Hua, . TECHNICAL COMPARISON AND ECONOMIC ANALYSIS OF BUILDING STRENGTHENING[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(4): 88-90. doi: 10.13204/j.gyjz200704024
Citation: DING Shijun, DING Mintao, MAN Yin, NIE Zhibao. Analysis on Effect Factors and Characteristics of Shear Properties for Interfaces Between Basalt and Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 194-200. doi: 10.13204/j.gyjzG22060607

Analysis on Effect Factors and Characteristics of Shear Properties for Interfaces Between Basalt and Concrete

doi: 10.13204/j.gyjzG22060607
  • Received Date: 2022-06-06
    Available Online: 2023-05-25
  • Publish Date: 2023-01-20
  • In order to study effect factors and characteristics of shear properties for interfaces between basalt and concrete, a test device for testing properties was designed. Using basalt and C20 and C30 concrete from the same site, 30 indoor specimens for shear tests of rock-concrete interface were conducted. According to the load-displacement curve obtained by the test, the ultimate shear bearing capacity was determined, and the mean value of the interface shear strength was calculated. After normalizing the test results, the effects of interface scales, strength grades and curing ages of concrete, and rock integrity on shear properties of interfaces were studied. The test results showed that the device could effectively simulate and measure the shear properties of interfaces between rock and concrete; the shear capacity of specimens was strongly positive correlative with contact areas, but was not obvious correlative with height or diameter of shear planes. The statistical coefficient of variation for measured strength values increased with the decrease in height of the rock specimens; after the curing age for 7 days,the design strength grade of concrete had an inapparent effect on the interface shear strength under 90% confidence probability; when the curing age of concrete was more than 7 days, the increase in curing age had a positive effect on the interface strength,the longer the curing age of concrete was, the smaller the displacement at the shear strength was. The more intact the rock was, the higher the shear strength of interfaces between rock and concrete was.
  • [1]
    郑卫锋,鲁先龙,程永锋,等.输电线路岩石锚杆基础工程临界锚固长度的研究[J].电力建设,2009,30(9):12-14.
    [2]
    丁士君,鲁先龙.输电线路岩石锚杆基础载荷试验[J].电力建设,2010, 31(11):1-5.
    [3]
    郑卫锋,鲁先龙,程永锋,等.输电线路岩石锚杆基础试验研究[J].工程勘察, 2010,38(1):5-8.
    [4]
    侯中伟,郑卫锋.特高压输电线路岩石锚杆基础选型与设计[J].电力建设, 2014, 35(10):64-68.
    [5]
    李才华,窦鹏冲.输电线路岩石锚杆基础抗拔试验分析[J].武汉大学学报(工学版), 2020, 53(增刊1):116-120.
    [6]
    郑卫锋,张天光,陈大斌,等.我国输电线路基础工程现状与研究新进展[J].水利与建筑工程学报, 2020, 18(2):169-175.
    [7]
    DONG W, WU Z, ZHOU X, et al. An experimental study on crack propagation at rock-concrete interface using digital image correlation technique[J]. Engineering Fracture Mechanics, 2017, 171:50-63.
    [8]
    TIAN H, CHEN W, YANG D, et al. Experimental and numerical analysis of the shear behaviour of cemented concrete-rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48(1):213-222.
    [9]
    ZHONG H, OOI E, SONG C, et al. Experimental and numerical study of the dependency of interface fracture in concrete-rock specimens on mode mixity[J]. Engineering Fracture Mechanics, 2014, 124:287-309.
    [10]
    KROUNIS A, JOHANSSON F, LARSSON S. Shear strength of partially bonded concrete-rock interfaces for application in dam stability analyses[J]. Rock Mechanics and Rock Engineering, 2016, 49(7):2711-2722.
    [11]
    SAIANG D, MALMGREN L, NORDLUND E. Laboratory tests on shotcrete-rock joints in direct shear, tension and compression[J]. Rock Mechanics and Rock Engineering, 2005, 38(4):275-297.
    [12]
    RAO G A, RAGHU PRASAD B. Influence of type of aggregate and surface roughness on the interface fracture properties[J]. Materials and Structures, 2004, 37(5):328-334.
    [13]
    CALISKAN S, KARIHALOO B L, BARR B. Study of rock-mortar interfaces:part II:strength of interface[J]. Magazine of Concrete Research, 2002, 54(6):463-472.
    [14]
    YANG S, SONG L I, LI Z H E, et al. Experimental investigation on fracture toughness of interface crack for rock/concrete[J]. International Journal of Modern Physics B, 2008, 22(31/32):6141-6148.
    [15]
    KISHEN J M C, SAOUMA V E. Fracture of rock-concrete interfaces:laboratory tests and applications[J]. Structural Journal, 2004, 101(3):325-331.
    [16]
    SUJATHA V, KISHEN J M C. Energy release rate due to friction at bimaterial interface in dams[J]. Journal of Engineering Mechanics, 2003, 129(7):793-800.
    [17]
    SLOWIK V, KISHEN J M C, SAOUMA V E. Mixed mode fracture of cementitious bimaterial interfaces:Part I:Experimental results[J]. Engineering Fracture Mechanics, 1998, 60(1):83-94.
    [18]
    王保田,朱珍德,张福海,等.花岗岩与混凝土胶结面抗剪强度的试验研究[J].岩土力学, 2004, 25(11):1717-1721.
    [19]
    林伟平,田开圣,曾广平.影响混凝土与基岩胶结面抗剪强度的主要因素研究[J].水利学报, 1985(10):8-17.
    [20]
    郭立湘,童根树.方、矩形钢管混凝土试件界面抗剪强度及横隔板的作用分析[J].工业建筑, 2015,45(6):154-159.
    [21]
    BUYUKOZTURK O, HEARING B. Crack propagation in concrete composites influenced by interface fracture parameters[J]. International Journal of Solids and Structures, 1998, 35(31/32):4055-4066.
    [22]
    LEE K M, BUYUKOZTURK O. Fracture toughness of mortar-aggregate interface in high-strength concrete[J]. Materials Journal, 1995, 92(6):634-642.
    [23]
    LEE Y H, CARR J R, BARR C J, et al. The fractal dimension as a measure of the roughness of rock discontinuity profiles[J]. The International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts, 1990,27(6):453-464.
    [24]
    俞纯权.不等次数重复试验双因素方差分析的应用[J].统计教育,1996(3):42-43.
  • Relative Articles

    [1]Yu Feng, Cheng Anchun, Li Deguang, Niu Ditao, Xu Guoshi. FINITE ELEMENT ANALYSIS OF PVC-FRP CONFINED REINFORCED CONCRETE SHORT COLUMN UNDER ECCENTRIC COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 83-87. doi: 10.13204/j.gyjz201504015
    [2]Ren Qingxin, Li Lin, Wang Qingli. BEHAVIOUR OF SQUARE TAPERED CONCRETE-FILLED STEEL TUBULAR LONG COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 27-31.
    [3]Bu Liangtao, Wu Weihua, Liu Shangkai. TECHNICAL AND ECONOMIC ANALYSIS OF STEEL FIBER FERROCEMENT MORTAR STRENGTHENING METHOD[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 149-153,168. doi: 10.13204/j.gyjz201309029
    [4]Zhang Baolong, Wu Gang, Ji Weishang. STUDY ON THE MECHANICAL PROPERTIES OF BINDING-ADHESIVE JOINTS APPLIED TO FRP COMPOSITES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 32-35. doi: 10.13204/j.gyjz201306008
    [5]Yang Wan, Zhang Jiwen, Huang Gang. ANALYSIS OF THE ECONOMIC AND ENVIRONMENTAL BENEFITS FOR THE LOW-COST ENERGY SAVING RECONSTRUCTION OF LARGE COMMERCIAL BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 138-141,153. doi: 10.13204/j.gyjz201111030
    [6]Zhao Dong, Mao Xiaofei, Chen Ping. RESEARCH ON REINFORCEMENT OF EARTHEN ARCHITECTURE SITE WITH GEO-FILAMENT ANCHOR[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(1): 114-116. doi: 10.13204/j.gyjz200801029
    [7]Kong Xiangli, Zhou Jian, Wang Chunmiao. MONOLITHIC ROTATIONAL AND TRANSLATIONAL TECHNIQUE OF BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 100-102,106. doi: 10.13204/j.gyjz200702025
    [8]Feng Xiao-ping, Long Wei-ding. TECHNICAL AND ECONOMIC ANALYSIS OF ENERGY) SAVING POTENTIALITY IN THE RESIDENTIAL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 47-49,57. doi: 10.13204/j.gyjz200712011
    [9]Yang You-fu. STUDY ON BEARING MECHANISMS OF RECYCLED AGGREGATE CONCRETE-FILLED STEEL TUBULAR MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 7-12. doi: 10.13204/j.gyjz200712002
    [10]Li De-rong, Fan Hong-wu, Cao Yi-ran. OVERALL DESIGN AND ECONOMICAL ANALYSIS ON ENERGY EFFICIENT BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 27-28,81. doi: 10.13204/j.gyjz200608009
    [11]Ma Xiuli, Xiao Yongquan, Li Bin, Wang Wei. ANALYSIS OF SYNTHETICALLY ENERGY-SAVING AND ECONOMIC RESULTS OF BUILDING ENCLOSURE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 16-18. doi: 10.13204/j.gyjz200601006
    [12]Li Chen, Huang Pengbin. NEW TIMES AND NEW CONTENTS——ON BASIC PRINCIPLE OF ARCHITECTURE"UTILITY,ECONOMY AND BEAUTY"[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(12): 104-106. doi: 10.13204/j.gyjz200512029
    [13]Chang Linrun, Luo Zhenbiao. SERVICE STRUCTURE CALCULATING SOFTWARE AND SRUCTURE CONCEPTUAL DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 56-59,84. doi: 10.13204/j.gyjz200505015
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.9 %FULLTEXT: 16.9 %META: 83.1 %META: 83.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.8 %其他: 7.8 %上海: 1.3 %上海: 1.3 %北京: 11.7 %北京: 11.7 %南通: 1.3 %南通: 1.3 %张家口: 5.2 %张家口: 5.2 %柳州: 2.6 %柳州: 2.6 %漯河: 3.9 %漯河: 3.9 %芒廷维尤: 27.3 %芒廷维尤: 27.3 %芝加哥: 1.3 %芝加哥: 1.3 %衢州: 1.3 %衢州: 1.3 %西宁: 35.1 %西宁: 35.1 %重庆: 1.3 %重庆: 1.3 %其他上海北京南通张家口柳州漯河芒廷维尤芝加哥衢州西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (91) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return