Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Li Yi, Zhao Wen, Yan Yunqi. METHOD OF CONTINUAL ANALYSIS FOR SYSTEM RELIABILITY[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 26-28,39. doi: 10.13204/j.gyjz200510009
Citation: WANG Xiuli, WU Zheng, CHEN Zhihua, PAN Xubin. Experimental Study on Physical and Mechanical Properties and Frost Resistance of EPS Cement-Based Composites with Corn Husk Fiber[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 208-215. doi: 10.13204/j.gyjzG22052414

Experimental Study on Physical and Mechanical Properties and Frost Resistance of EPS Cement-Based Composites with Corn Husk Fiber

doi: 10.13204/j.gyjzG22052414
  • Received Date: 2022-05-24
  • The corn husk fibers with different mass fraction and expanded polystyrene (EPS) particles were mixed and added to the cement matrix to study their effects on the density, water absorption, compressive strength, flexural strength, splitting tensile strength and frost resistance of the composites. The results showed that the higher the content of corn skin plant fiber, the lower the density and the higher the water absorption of EPS cement-based composites; the compressive strength decreases with the increase of fiber content and EPS content, and the maximum compressive strength is 2.2 MPa and the minimum is 0.8 MPa; the flexural strength increases first and then decreases with the increase of fiber content, and when the fiber content is 3%, EPS content is 1.3%, the maximum flexural strength is 1.2 MPa; the splitting tensile strength increases with the increase of fiber content and decreases with the increase of EPS content, and when the fiber content is 3%, EPS content is 1.1%, and the highest splitting tensile strength is 1.1 MPa. What’s more, the addition of corn bran fiber can effectively reduce the mass loss and strength loss of the composite and improve its frost resistance.
  • [1]
    张文华,吕毓静,刘鹏宇.EPS混凝土研究进展综述[J].材料导报, 2019,33(13):2214-2228.
    [2]
    陈继浩,崔琪,潘华.秸秆复合墙板应用性能试验研究[J].新型建筑材料,2021,48(4):92-94.
    [3]
    MOMOH E O, OSOFERO A I. Behaviour of oil palm broom fibres (OPBF) reinforced concrete[J]. Construction and Building Materials, 2019, 221: 745-761.
    [4]
    AFROZ M, VENKATESAN S, PATNAIKUNI I. Effects of hybrid fibers on the development of high volume fly ash cement composite[J]. Construction and Building Materials, 2019, 215: 984-997.
    [5]
    李碧雄,汪知文,苏柳月,等.减小EPS混凝土收缩的配合工艺试验研究[J].材料导报,2021,35(16):16021-16027.
    [6]
    蔡丽朋.用再生聚苯颗粒生产新型墙体材料的研究[J].新型建筑材料,2014,41(3):78-80.
    [7]
    邓志恒,梁倚,黄华秋.再生混凝土掺聚苯颗粒空心砌块性能试验研究[J].混凝土,2016(10):135-138.
    [8]
    MERTA I, TSCHEGG E K. Fracture energy of natural fibre reinforced concrete[J]. Construction and Building Materials, 2013, 40: 991-997.
    [9]
    COOK D J. Expanded polystyrene beads as lightweight aggregate for concrete[J].Precast Concrete,1973,4(4): 691-693.
    [10]
    BABAVALIAN A, RANJBARAN A H, SHAHBEYK S. Uniaxial and triaxial failure strength of fiber reinforced EPS concrete[J]. Construction and Building Materials, 2020, 247[2022-05-24].https://doi.org/10.1016/j.conbuildmat.2020.118617.
    [11]
    陈兵,涂思炎,翁友法.EPS轻质混凝土性能研究[J].建筑材料学报,2007(1):26-31.
    [12]
    刘嫄春,张令心,侯为军,等.掺入聚丙烯纤维的EPS混凝土试验研究[J].混凝土与水泥制品,2012(11):43-45.
    [13]
    刘嫄春,张令心,战佳朋,等.EPS轻质混凝土强度模型[J].混凝土,2013(2):36-37,45.
    [14]
    ANDIÇ-ÇAKIR Ö, SARIKANAT M, TVFEKÇI H B, et al. Physical and mechanical properties of randomly oriented coir fiber-cementitious composites[J]. Composites Part B: Engineering, 2014, 61: 49-54.
    [15]
    ASTUTININGSIH S, SURA W, ZAKIYUDDIN A. Comparison of the compressive strength and the microstructure of metakaolin metastar and metakaolin bangka as additive in ordinary portland cement[C]//E3S Web of Conferences. 2018.
    [16]
    蒋林华,刘振清,叶义群.大掺量Ⅲ级粉煤灰混凝土耐久性研究[J].建筑材料学报,2004(3):328-331.
    [17]
    邢洁,于蕾.混凝土孔结构填充材料的选择及适用性分析[J].新型建筑材料,2020,47(6):51-55.
    [18]
    郭垂根,韩福芹,邵博,等.稻草增强水泥基复合材料的研究[J].混凝土与水泥制品,2008(1):38-40.
    [19]
    白诗淇.植物纤维混凝土性能研究[J].中国新技术新产品,2020(24):73-75.
    [20]
    李碧雄,廖桥,吴瑾炎.新型秸秆纤维混凝土实心砖的性能试验研究[J].工程科学与技术,2018,50(5):216-223.
    [21]
    LONG W, WANG Y. Effect of pine needle fibre reinforcement on the mechanical properties of concrete[J/OL]. Construction and Building Materials, 2021, 278[2022-05-24].https://doi.org/10.1016/j.conbuildmat.2021.122333.
    [22]
    蹇守卫,汪婷,马保国,等.改性水稻秸秆对水泥基材料性能影响研究[J].材料导报,2014,28(6):132-135.
    [23]
    MELKAMU A, KAHSAY M B, TESFAY A G. Mechanical and water-absorption properties of sisal fiber (Agave sisalana)-reinforced polyester composite[J]. Journal of Natural Fibers, 2019, 16(6): 877-885.
    [24]
    HWANG C L, TRAN V A, HONG J W, et al. Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites[J]. Construction and Building Materials, 2016, 127: 984-992.
    [25]
    梅利芳,徐光黎.纤维聚苯乙烯泡沫颗粒轻质土的制备及力学性能[J].复合材料学报,2016,33(10):2355-2362.
    [26]
    THANUSHAN K, YOGANANTH Y, SANGEETH P, et al. Strength and durability characteristics of coconut fibre reinforced earth cement blocks[J]. Journal of Natural Fibers, 2021, 18(6): 773-788.
    [27]
    MACHAKA M, BASHA H, ABOU CHAKRA H, et al. Alkali treatment of fan palm natural fibers for use in fiber reinforced concrete[J]. European Scientific Journal, 2014, 10(12):186-195.
    [28]
    ÇOMAK B, BIDECI A, BIDECI Ö S. Effects of hemp fibers on characteristics of cement based mortar[J]. Construction and Building Materials, 2018, 169: 794-799.
  • Relative Articles

    [1]ZHOU Wansen, ZHONG Jufang, ZHANG Yanhong, HU Xiao. Research on Time-Frequency Parameter Prediction Models of Ground Motion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105
    [2]SUN Xiaoyun, HUANG Linjie, ZENG Bin, SHI Zheng, XIE Qin. Analysis of Seismic Performance of Self-Centering Concrete Frame Structures Characterized by Low Prestressing and Slope Friction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 38-45. doi: 10.3724/j.gyjzG24091003
    [3]SUI Weining, MA Yong, YANG Haitao, WU Jinguo. Experimental Study on Mechanical Properties of a New Connection Joint Between PC External Wall Panel and Steel Frame with Frictional Energy Dissipation[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 109-117. doi: 10.13204/j.gyjzG22011501
    [4]LIU Hang, LI Mu, YANG Xuezhong, HAN Mingjie, TIAN Yuji. Experimental Research on Seismic Performance of Self-centering Prefabricated RC Frame Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 65-73. doi: 10.13204/j.gyjzG21062601
    [5]HUANG Linjie, ZENG Bin, ZHOU Zhen, ZHANG Wenqing, SANG Chenxu, ZHANG Jingru. Influence of Joint Stiffness After Gap Opening on Seismic Performance of Self-Centering Prestressed Concrete Frames with Variable Friction Dampers[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 88-93. doi: 10.13204/j.gyjzG22072916
    [6]CHANG Zhaoqun, LIU Boquan, HAN Meng, BAI Tao, XING Guohua, WANG Shuangbing. DESIGN AND NUMERICAL ANALYSIS OF AN INNOVATIVE SELF-CENTERING FRICTION DAMPER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 138-142,221. doi: 10.13204/j.gyjzG20080402
    [7]HUANG Ming, LIU Ye, DING Yi, LYU Qingfang. EXPERIMENTAL RESEARCH ON SELF-CENTERING CLB ROCKING WALL EQUIPPED WITH CFD[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 40-46,61. doi: 10.13204/j.gyjzG21042509
    [8]HAN Tengfei, XU Gang, LI Liang, LI Xiaodong, XI Xiangdong. RESEARCH AND APPLICATION OF SHEAR RESISTANCE OF FRICTION CONNECTION WITH HIGH STRENGTH BOLTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 133-136. doi: 10.13204/j.gyjzG201909120001
    [9]HUANG, Linjie, ZHOU, Zhen. INVESTIGATION ON INFLUENCE OF INFILL WALLS ON HIGHER MODE EFFECT OF SELF-CENTERING PRESTRESSED CONCRETE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 34-39. doi: 10.13204/j.gyjz202001007
    [10]MENG, Shaoping, CAI, Xiaoning. RESEARCH PROGRESS ON PRESTRESSED SELF-RESETTING CONCRETE FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 1-6. doi: 10.13204/j.gyjz202001001
    [11]MA, Junfeng, ZHOU, Zhen. HYSTERICAL BEHAVIOR OF AN UPPER-BOTTOM FRICTION DAMPER SELF-CENTERING PRESTRESSED CONCRETE BEAM-COLUMN CONNECTION WITH HIDDEN CORBEL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 16-21,124. doi: 10.13204/j.gyjz202001004
    [14]Liu Pengfei, Zhao Qilin, Jiang Kebin, Gao Hesheng. THEORETIC RESEARCH ON FRICTION LOSS OF PRE-STRESS IN LARGE-SPAN CONCRETE BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 64-67. doi: 10.13204/j.gyjz201110016
    [15]Wu Yingjun, Chen Zhihua, LüQing. RESEARCH AND APPLICATION OF ROLL CABLE-STRUT JOINT IN SUSPEND-DOME[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 27-29,34. doi: 10.13204/j.gyjz201008007
    [16]Wu Zhuanqin, Zeng Zhaobo, Shang Renjie, Liu Jingliang. EXPERIMENTAL STUDY ON FRICTION COEFFICIENT OF RETARD-BONDED PRESTRESSING STRAND[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 20-23. doi: 10.13204/j.gyjz200811006
    [17]Cai Jiangyong. IMPROVING SUGGESTION ON CALCULATION METHOD OF FRICTION LOSS IN PRESTRESSED CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 94-95,75. doi: 10.13204/j.gyjz200404029
  • Cited by

    Periodical cited type(1)

    1. 张文超,李帅. 结构抗震时程分析输入地震波选择方法研究. 砖瓦. 2024(07): 73-75 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 84.0 %META: 84.0 %PDF: 1.5 %PDF: 1.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %China: 1.5 %China: 1.5 %上海: 0.5 %上海: 0.5 %保定: 0.5 %保定: 0.5 %信阳: 0.5 %信阳: 0.5 %北京: 4.1 %北京: 4.1 %南通: 0.5 %南通: 0.5 %南阳: 0.5 %南阳: 0.5 %厦门: 0.5 %厦门: 0.5 %台州: 0.5 %台州: 0.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %大庆: 0.5 %大庆: 0.5 %天津: 0.5 %天津: 0.5 %太原: 0.5 %太原: 0.5 %宁波: 0.5 %宁波: 0.5 %宿州: 1.0 %宿州: 1.0 %常德: 0.5 %常德: 0.5 %廊坊: 1.0 %廊坊: 1.0 %延安: 0.5 %延安: 0.5 %张家口: 5.2 %张家口: 5.2 %无锡: 1.5 %无锡: 1.5 %昆明: 0.5 %昆明: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.5 %杭州: 1.5 %桂林: 0.5 %桂林: 0.5 %沈阳: 0.5 %沈阳: 0.5 %深圳: 0.5 %深圳: 0.5 %潍坊: 0.5 %潍坊: 0.5 %芒廷维尤: 11.9 %芒廷维尤: 11.9 %芝加哥: 3.1 %芝加哥: 3.1 %苏州: 0.5 %苏州: 0.5 %蚌埠: 1.0 %蚌埠: 1.0 %西宁: 34.5 %西宁: 34.5 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 5.7 %运城: 5.7 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.5 %郑州: 1.5 %金华: 0.5 %金华: 0.5 %长沙: 0.5 %长沙: 0.5 %阳泉: 2.1 %阳泉: 2.1 %黄冈: 0.5 %黄冈: 0.5 %其他China上海保定信阳北京南通南阳厦门台州呼和浩特嘉兴大庆天津太原宁波宿州常德廊坊延安张家口无锡昆明晋城朝阳杭州桂林沈阳深圳潍坊芒廷维尤芝加哥苏州蚌埠西宁西安贵阳运城邯郸郑州金华长沙阳泉黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads(1) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return