Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
Citation: CHENG Xuesong, ZHAO Linsong, PAN Jun, ZHENG Gang, JIA Jianwei, JIAO Ying. Research on Deformation Laws of Soil Caused by Grouting and Grouting Efficiency[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 171-179. doi: 10.13204/j.gyjzG22051213

Research on Deformation Laws of Soil Caused by Grouting and Grouting Efficiency

doi: 10.13204/j.gyjzG22051213
  • Received Date: 2022-05-12
  • The deformation laws of soil caused by grouting and grouting efficiency with times and space were lack of systematic theoretical research, which hindered the application of grouting in accurate deformation control of proximity construction. Based on the field test, the variation laws of soil deformation and grouting efficiency with time and space were systematically studied by using the numerical simulation method of fluid-solid coupling. Simultaneously, the effects of grouting parameters such as grouting volume, grouting space and grouting depth on soil deformation and grouting efficiency were considered. And based on the study, some suggestions on grouting deformation control were put forward. The study indicated that when it was necessary to control subsidence of the ground or tunnels, it was suggested that the top of the grouted body should be flush with the target object. When it was necessary to control heave of the ground or tunnels, it was recommended that the bottom of the grouted body be flush with the target object. With the increase of grouting space, the horizontal and vertical displacement of soil and the grouting efficiency of horizontal displacement decreased rapidly. In order to ensure the deformation effect caused by grouting, the grouting distance should be not to long.
  • [1]
    HARRIS D I, MAIR R J, LOVE J P, et al. Observations of ground and structure movements for compensation grouting during tunnel construction at Waterloo station[J]. Geotechnique, 1994, 44(4):691-713.
    [2]
    NI J C, CHENG W C. Monitoring and modeling grout efficiency of lifting structure in soft clay[J]. International Journal of Geomechanics, 2010, 10(6):223-229.
    [3]
    彭正勇. 注浆抬升在隧道穿越既有建筑物中的研究及应用[J]. 岩石力学与工程学报, 2011, 30(增刊1):2963-2969.
    [4]
    ZHOU S H, XIAO J H, DI H G, et al. Differential settlement remediation for new shield metro tunnel in soft soils using corrective grouting method:case study[J]. Canadian Geotechnical Journal, 2018, 55(12):1877-1887.
    [5]
    张成平, 张顶立, 吴介普, 等. 暗挖地铁车站下穿既有地铁隧道施工控制[J]. 中国铁道科学, 2009, 30(1):69-73.
    [6]
    唐智伟, 赵成刚, 张顶立. 地下工程抬升注浆设计方法及其抬升效果预测研究[J]. 土木工程学报, 2007, 40(8):79-84.
    [7]
    MASINI L, RAMPELLO S, SOGA K. An approach to evaluate the efficiency of compensation grouting[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12):1-11.
    [8]
    AU S K A, SOGA K, JAFARI M R, et al. Factors affecting long-term efficiency of compensation grouting in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3):254-262.
    [9]
    SOGA K, AU S K A, BOLTON M D. Laboratory investigation of multiple grout injections into clay[J]. Geotechnique, 2004, 54(2):81-90.
    [10]
    郑刚, 王若展, 程雪松. 注浆对邻近土体水平变形影响的原位试验研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(9):959-968.
    [11]
    程雪松, 高洁, 潘军. 注浆水平纠偏的作用规律与影响因素[J]. 土木与环境工程学报(中英文):2022,44(5):1-13.
    [12]
    SCHWEIGER H F, KUMMERER C, OTTERBEIN R, et al. Numerical modelling of settlement compensation by means of fracture grouting[J]. Soils and Foundations, 2004, 44(1):71-86.
    [13]
    KOVACEVIC N, EDMONDS H, MAIR R, et al. Numerical modelling of the NATM and compensation grouting trial at Redcross Way[C]//Proceedings of International Symposium on Geotechnical Aspects of Undergrond Construction in Soft Ground. 1996:553-559.
    [14]
    SOGA K, BOLTON M D, AU S K A, et al. Development of compensation grouting modelling and control system[J/OL]. Geotechnical Aspects of Underground Construction in Soft Ground,2000[2022-05-12]. https://www.issmge.org/publications/publication/development-of-compensation-grouting-modelling-and-control-system.
    [15]
    KOMIYA K, SOGA K, AKAGI H, et al. Soil consolidation associated with grouting during shield tunnelling in soft clayey ground[J]. Geotechnique, 2001, 51(10):835-846.
    [16]
    WANG D Y, XING X M, QU H H, et al. Simulated radial expansion and heave caused by compaction grouting in noncohesive soils[J/OL]. International Journal of Geomechanics, 2013, 15(4)[2022-05-12]. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000333.
    [17]
    ZHANG M, WANG X H, WANG Y. Numerical evaluation of uplifting effect for upper structure by grouting[J]. Journal of Central South University of Technology, 2012, 19(2):553-561.
    [18]
    NICOLINI E, NOVA R. Modelling of a tunnel excavation in a non-cohesive soil improved with cement mix injections[J]. Computers and Geotechnics, 2000, 27(4):249-272.
    [19]
    WISSER C, AUGARDE C E, BURD H J. Numerical modelling of compensation grouting above shallow tunnels[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(5):443-471.
    [20]
    FALK E. Soil improvement by injection of solid material with hydraulic energy[D]. Vienna:Vienna University of Technology, 1998.
    [21]
    BRINKGREVE R B J, KUMARSWAMY S, SWOLFS W M. Plaixs 3D Manual[M]. Delft:Plaxis bv, 2018.
    [22]
    上海市市政工程管理局.上海市地铁沿线建筑施工保护地铁技术管理暂行规定:沪市政法(94)第854号[S].上海:上海市市政工程管理局,1994.
  • Relative Articles

    [1]JIN Nan, WU Yongjingbang, SHI Zhongqi, YUE Qingrui, ZHENG Zexing. Research on Methods for Detection and Localization of Color Steel Tile Buildings[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 58-64. doi: 10.3724/j.gyjzG23120810
    [2]WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305
    [3]ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611
    [4]FAN Cunjun, JIN Songyan, JIN Nan, SHI Zhongqi, WU Yongjingbang, HAO Xintian. Crack Recognition and Quantitative Analysis Based on Deep Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 126-132. doi: 10.3724/j.gyjzG24061802
    [5]YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
    [6]FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618
    [7]LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
    [8]LI Rui, ZHANG Chun. RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 177-183. doi: 10.13204/j.gyjzg20103011
    [9]ZHOU Yiyi, WANG Jin, LI Jiannan, JIAN Huicheng, ZHOU Qiang, HU Jiayi. STRUCTURAL LAYOUT AND SEISMIC ANALYSIS OF THE SPHERICAL EXHIBITION CENTER IN SUZHOU HIGH SPEED RAILWAY NEW CITY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 204-212. doi: 10.13204/j.gyjzG20102206
    [10]HU Weibing, YANG Jia, WANG Long, HOU Yanfang. STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 71-77,111. doi: 10.13204/j.gyjzG20020501
    [11]Guo Man-liang, Huang Chao-jie, Ling Jiang, Xiao Ming. INTRODUCTION TO PROPOSALS FOR INTERNATIONAL DESIGN COMPETITION FOR SHENZHEN UNIVERSIDE SPORTS CENTRE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 113-119,82. doi: 10.13204/j.gyjz201210024
    [12]Chen Zhihua, Weng Kai, Liu Hongbo, Yan Renzhang, Bu Yidu. THE RESEARCH STATUS AND ENGINEERING APPLICATION OF STAINLESS STEEL ON SPACE GRID STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 55-62,54. doi: 10.13204/j.gyjz2011205009
    [13]Wang Cheng Zhang Yigang Tan Zhengguang, . ANALYSIS OF LOADING PROCESS OF THE IRSSP AFFECTED BY WEB MEMBER[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 89-92. doi: 10.13204/j.gyjz200811022
    [14]Hong Jinxiang, Huang Wei, Miao Changwen. STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 47-49. doi: 10.13204/j.gyjz200407013
  • Cited by

    Periodical cited type(3)

    1. 周建. 基于长短期记忆网络的田径运动员专项体能训练即时数据采集. 兰州文理学院学报(自然科学版). 2023(03): 107-112 .
    2. 李红民,王健,闫凯. 基于多传感器数据融合的空间结构健康状态评估方法. 建筑结构学报. 2023(S1): 364-371 .
    3. 王健,李红民,闫凯. 基于突变理论的空间钢结构稳定性研究. 山东建筑大学学报. 2023(05): 33-39 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 89.2 %META: 89.2 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %其他: 0.5 %其他: 0.5 %[]: 1.0 %[]: 1.0 %临汾: 0.5 %临汾: 0.5 %北京: 10.8 %北京: 10.8 %南京: 1.5 %南京: 1.5 %台州: 0.5 %台州: 0.5 %合肥: 2.0 %合肥: 2.0 %咸阳: 0.5 %咸阳: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.0 %天津: 1.0 %宣城: 1.0 %宣城: 1.0 %常州: 1.0 %常州: 1.0 %常德: 0.5 %常德: 0.5 %开封: 0.5 %开封: 0.5 %张家口: 2.9 %张家口: 2.9 %扬州: 0.5 %扬州: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %枣庄: 0.5 %枣庄: 0.5 %济南: 1.5 %济南: 1.5 %湖州: 0.5 %湖州: 0.5 %漯河: 1.5 %漯河: 1.5 %芒廷维尤: 31.9 %芒廷维尤: 31.9 %芝加哥: 0.5 %芝加哥: 0.5 %莫斯科: 1.0 %莫斯科: 1.0 %西宁: 16.7 %西宁: 16.7 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 6.9 %运城: 6.9 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.0 %郑州: 2.0 %重庆: 0.5 %重庆: 0.5 %长沙: 1.5 %长沙: 1.5 %青岛: 1.0 %青岛: 1.0 %其他其他[]临汾北京南京台州合肥咸阳大连天津宣城常州常德开封张家口扬州晋城朝阳枣庄济南湖州漯河芒廷维尤芝加哥莫斯科西宁西安贵阳运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads(3) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return