Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Xinling, Kang Xiandong, Li Ke, Huang Weidong. FATIGUE DAMAGE MECHANISM OF HRBF500 RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 45-48. doi: 10.13204/j.gyjz201311011
Citation: SHI Qingxuan, HUO Jian, WU Xikai, TAO Yi. Advances in 3D Printing Raw Soil Construction Technology[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 190-198. doi: 10.13204/j.gyjzG22042612

Advances in 3D Printing Raw Soil Construction Technology

doi: 10.13204/j.gyjzG22042612
  • Received Date: 2022-04-26
    Available Online: 2023-07-01
  • The potential construction advantages of 3D printing technology are of great significance to promote the building industrialization, and its application to raw soil construction is one of the focuses of attention and research at home and abroad. Firstly, the preparation technology of 3D printing raw soil was reviewed from the aspects of the composition of 3D printing raw materials, the rheology of raw soil to meet the requirements of 3D printing, and the shrinkage and cracking caused by drying of raw soil. The extrudability and maximum height of raw soil from the printing nozzle were summarized. The influence of process parameters such as nozzle shape and size, printing speed and path on the molding of 3D printing raw soil was analyzed. This paper mainly summarized the research status of compressive strength and interlayer bond strength of 3D printed raw soil after hardening, and finally introduced the problems faced by 3D printing raw soil construction technology and the prospect of the future, which could provide a reference for the research and development of 3D printing raw soil construction technology.
  • [1]
    GOMAA M, CARFRAE J, GOODHEW S, et al. Thermal performance exploration of 3D printed cob[J]. Architectural Science Review, 2019, 62(3):230-237.
    [2]
    HAMARD E, CAZACLIU B, RAZAKAMANANTSOA A, et al. Cob, a vernacular earth construction process in the context of modern sustainable building[J]. Building and Environment, 2016, 106:103-119.
    [3]
    DUBOR A, CABAY E, CHRONIS A. Energy efficient design for 3D printed earth architecture[C]//Humanizing Digital Reality:Design Modelling Symposium Paris 2017. Springer Singapore:2018:383-393.
    [4]
    ALHUMAYANI H, GOMAA M, SOEBARTO V, et al. Environmental assessment of large-scale 3D printing in construction:a comparative study between cob and concrete[J]. Journal of Cleaner Production, 2020, 270:1-30.
    [5]
    PEGNA J. Exploratory investigation of soild freeform construction[J]. Automation in construction, 1997, 5(5):427-437.
    [6]
    ALBERTO C. La prima Casa Stampata in 3D generata con la Terra|Gaia[EB/OL]. (2018-09-29). https://www.3dwasp.com/casa-stampata-in-3d-gaia/.
    [7]
    杨永, 张树青, 荣辉, 等. 石灰基材料对生土改性效果及机制研究[J]. 功能材料, 2019, 50(4):4067-4073.
    [8]
    尹道道. 石膏基改性生土建筑材料的研究[D]. 重庆:重庆大学, 2019.
    [9]
    周铁钢, 杨华, 胡昕. 石膏-土坯墙民居抗震性能试验研究[J]. 世界地震工程, 2009, 25(3):130-134.
    [10]
    史庆轩, 郭天宇, 贺志坚. 历史夯土建筑改性土抹面加固材料的试验研究[J]. 建筑材料学报, 2020, 23(5):1238-1245.
    [11]
    PERROT A, RANGEARD D, COURTEILLE E. 3D printing of earth-based materials:Processing aspects[J]. Construction and Building Materials, 2018, 172:670-676.
    [12]
    CURTH A, DARWEESH B, ARJA L, et al. Advances in 3D printed earth architecture:On-site prototyping with local materials[J]. BE-AM|Building Environment Additive Manufacturing, 2020:105-110.
    [13]
    GOMAA M, VACULIK J, SOEBARTO V, et al. Feasibility of 3DP cob walls under compression loads in low-rise construction[J]. Construction and Building Materials, 2021, 301:1-19.
    [14]
    黄俊杰. 3D打印粘土基材料流变性能与力学性能研究[D]. 深圳:深圳大学, 2020.
    [15]
    FERRETTI E, MORETTI M, CHIUSOLI A, et al. Rice husk shredding as a means of increasing the long-term mechanical properties of earthen mixtures for 3D printing[J]. Material, 2022,15(3):743-771.
    [16]
    FERRETTI E, MORETTI M, CHIUSOLI A, et al. Mechanical properties of a 3D-printed wall segment made with an earthen mixture[J]. Materials, 2022, 15(2):438.
    [17]
    GOMAA M, JABI W, REYES A V, et al. 3D printing system for earth-based construction:Case study of cob[J]. Automation in Construction, 2021, 124:1-30.
    [18]
    KONTOVOURKIS O, MICHAEL P. A robotically-driven additive construction planning process using an ecological material[J]. The Virtual and the Physical, 2017(1):95-104.
    [19]
    AFSARY S, SANGUINETTI P. An environmental-economic friendly construction, robot-aided fabrication with clay:an experimental study[C]//Transform:Socially Embedded Collaborations. EDRA, 2020.
    [20]
    RODIFTSIS A. From the ground up:robotic additive manufacturing (RAM) of a structurally optimized earthen shell through computational design[D]. Delf:Technische Universiteit Delft, 2020.
    [21]
    VELIZ REYES A A, GOMAA M, CHATZIVASILEIADI A, et al. Computing craft:early development of a robotically-supported cob 3D printing system[M]//eCAADe 2018:Computing for a better tomorrow (Vol 1). Lodz:Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, 2018.
    [22]
    YOUSSEF N, RABENANTOANDRO A Z, LAFHAJ Z, et al. A novel approach of geopolymer formulation based on clay for additive manufacturing[J]. Construction Robotics, 2021, 5(2):175-190.
    [23]
    朱旻, 苏栋, 杨伟鸿, 等. 影响黏土3D打印性能的主要参数研究[J]. 建筑科学与工程学报, 2021, 38(6):40-47.
    [24]
    KONTOVOURKIS O, PHOCAS M C, TRYFONOS G, et al. Multi-axis 3D printing of material reduced shell structures on a reconfigurable supporting system using topology optimization principles[J]. Procedia Manufacturing, 2020,44:379-386.
    [25]
    KARL D, DUMINY T, LIMA P, et al. Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies[J]. Acta Astronautica, 2020,174:241-253.
    [26]
    REVELO C F, COLORADO H A. 3D printing of kaolinite clay with small additions of lime, fly ash and talc ceramic powders[J]. Processing and Application of Ceramics, 2019, 13(3):287-299.
    [27]
    MOHAMED G. Holistic investigation of robotically assisted 3D printed cob walls:from fabrication to environmental impacts[D]. Adelaide:The University of Adelaide, 2021.
    [28]
    SERDAR A, MARCEL B. Robotic 3D printing earth:earthen additive manufacturing with customized nozzles to create a gradient material for on-demand performance[D]. Delf:Technische Universiteit Delft, 2020.
    [29]
    FIGUEIREDO B, CRUZ P J S, CARVALHO J, et al. Challenges of 3d printed architectural ceramic components structures:controlling the shrinkage and preventing the cracking[C]//Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS), 2019.2019:1-8.
    [30]
    IZARD J B, DUBOR A, HERVÉ P E, et al. Large-scale 3D printing with cable-driven parallel robots[J]. Construction Robotics, 2017, 1(1):69-76.
    [31]
    CRUZ P J S, CAMõES A, FIGUEIREDO B, et al. Additive manufacturing effect on the mechanical behaviour of architectural stoneware bricks[J]. Construction and building Materials, 2020, 238:1-17.
    [32]
    KONTOVOURKIS O, TRYFONOS G. Robotic 3D clay printing of prefabricated non-conventional wall components based on a parametric-integrated design[J]. Automation in Construction, 2020, 110:1-19.
    [33]
    FARROKHSIAR P. Robotic sketching:A study on robotic 3D printing with clay[D]. Pennsylvania:The Pennsylvania State University, 2020.
    [34]
    WANG S, TOH H P, RASPALL F, et al. Detailing the configuration to perform better clay printing[J]. Cumln CAD, 2020(1):153-161.
    [35]
    WI K, SURESH V, WANG K, et al. Quantifying quality of 3D printed clay objects using a 3D structured light scanning system[J]. Additive Manufacturing, 2020,32:1-13.
    [36]
    GVRSOY B. From control to uncertainty in 3D printing with clay[C]//Computing for a better tomorrow-Proceedings of the 36th eCAADe Conference. 2018:21-30.
    [37]
    SHI J, CHO Y, TAYLOR M, et al. Guiding Instability:A craft-based approach for modular 3D clay printed masonry screen units[C]//Architecture in the Age of the 4th Industrial Revolution. 2019:477-484.
    [38]
    ALOTHMAN S, IM H C, JUNG F, et al. Spatial print trajectory controlling material behavior with print speed, feed rate, and complex print path[J]. Robotic Fabrication in Architecture, Art and Design, 2018(2):167-180.
    [39]
    MATIZ C C, MCMENOMY H B, ERDINE E. Environmentally informed robotic-aided fabrication[C]//Proceedings of the Symposium on Simulation for Architecture and Urban Design. 2019:1-8.
    [40]
    CLARE S. IAAC Demonstrates on Site robotics 3D printing construction method in Barcelona[EB/OL].(2017-07-25). https://3dprint.com/182052/iaac-3d-print-on-site-construction/.
    [41]
    FRANCESCA M. WASP stampa in 3D un concept store unico in collaborazi-one con Dior[EB/OL]. (2021-11-08). https://www.3dwasp.com/concept-store-stampato-in-3d-wasp-dior.
    [42]
    MARIO C. In Italy, 3D printers are making eco-friendly emergency housing[EB/OL]. (2022-04-12). https://www.mcarchi-tects.it/en/news/in-italy-3d-printers-are-making-eco-friendly-emergency-housing.
    [43]
    NICOLE J. This twisting tower is made out of 2 000 3D-printed terracotta bricks[EB/OL]. (2017-09-29). https://inhabitat.com/this-twisting-tower-is-made-out-of-2000-3d-printed-terracotta-bricks/.
    [44]
    Giannakopoulos S. 3D printing with soil and natural materials[EB/OL]. (2017-07-07). http://pylos.iaac.net/main.html#contact.
  • Relative Articles

    [1]ZHANG Xue, MEN Jinjie, RONG Qiang, QIAO Dehao. Research on Prediction Models of Flexural Capacity of Corroded RC Beams Based on Ensemble Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 128-137. doi: 10.3724/j.gyjzG24012901
    [2]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [3]SONG Songke, DU Taoming, YANG Tao, ZHANG Qinghua. Coupling Effect Mechanism of Pavement Characteristics on Fatigue Damage of Orthotropic Steel Decks[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 229-237. doi: 10.3724/j.gyjzG21122303
    [4]HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
    [5]ZHU Linxuan, ZHANG Mingyi, CHEN Chaoran, ZHOU Zhijun, WANG Miaomiao. Prediction of Carbonation Depth of Reinforced Concrete Beams Under Cyclic Flexural Loads[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 139-143,212. doi: 10.13204/j.gyjzG21112513
    [6]LI Bin, LUO Yanyan, LI Xingbo. Seismic Performance Test and Finite Element Analysis of Monolithic Precast Shear Wall with Partially-Connected Vertical Distributed Steel Bars[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 51-59,23. doi: 10.13204/j.gyjzG21040601
    [7]HU Wenhao, GUO Rui, REN Yu. Study on the Flexural Capacity of RC Beams Strengthened with FRP Grids Based on the Bond-Slip Cohesive Model[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 216-226. doi: 10.13204/j.gyjzG21062512
    [8]CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
    [9]GAO Ziqi, ZHANG Jintao, ZHANG Hao, HAO Han, GUO Rui. FINITE ELEMENT ANALYSIS OF FLEXURAL BEHAVIOR OF DAMAGED RC BEAMS REINFORCED BY FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 44-50,43. doi: 10.13204/j.gyjzG20110321
    [10]Zhu Chenfei, Liu Xiaojun, Li Wenzhe, Wu Yonggen, Liu Qingtao. STUDY OF FREEZE-THAW DURABILITY AND DAMAGE MODEL OFHYBRID FIBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 10-14. doi: 10.13204/j.gyjz201502003
    [11]Wang Zheng, Shi Qingxuan. COMPARATIVE ANANLYSIS OF SHEAR CAPACITY FOR REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 105-109,138. doi: 10.13204/j.gyjz201307024
    [12]Wang Yutian, Zhang Wei, Jiang Fuxiang. EXPERIMENT ON THE BENDING PERFORMANCE OF CFRP REINFORCED PRE-DAMAGED REINFORCED CONCRETE BEAM UNDER SEAWATER ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 99-103. doi: 10.13204/j.gyjz201302020
    [13]Jia Jinqing, Zhang Lihua, Meng Gang. CALCULATION METHOD FOR DAMAGE INDEX OF RC BEAM UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 54-58. doi: 10.13204/j.gyjz201208012
    [14]Liao Yanfen, Qi Yaqing, Ma Xiaoqian. NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BEAMS IN FIRE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 31-37. doi: 10.13204/j.gyjz201107007
    [15]Wang Xinling, Chen Qingping, Du Lin. EXPERIMENTAL RESEARCH ON HRBF500 HIGH STRENGTH RC BEAMS FOR HIGH SPEED RAILWAY UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 18-21,26. doi: 10.13204/j.gyjz201011006
    [16]Jiang Chaowen, Zhang Jiwen. NON-LINEAR ANALYSIS OF CONCRETE BEAM-COLUMN ASSEMBLIES REINFORCED WITH FINE GRAINED HIGH STRENGTH STEEL BARS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 40-44. doi: 10.13204/j.gyjz200911010
    [17]Zhao Yong, Wang Xiaofeng, Su Xiaozu, Cheng Zhijun. EXPERIMENTAL RESEARCH ON THE EFFECTS OF SURFACE REINFORCEMENT ON CRACK SPACING AND WIDTH OF REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 29-32. doi: 10.13204/j.gyjz200911008
    [18]Hu Ling, Yang Yongxin, Wang Quanfeng, Xu Yuye, Wang Jiangen. EXPERIMENTAL STUDY ON BOND ANCHORAGE PROPERTIES OF HRBF500 STEEL BARS IN CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 13-16,44. doi: 10.13204/j.gyjz200911004
    [19]Liu Ronggui, Fu Kai, Yan Tingcheng. THE FATIGUE PROPERTIES OF PRE-STRESSED CONCRETE STRUCTURE UNDER THE CONDITIONS OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 75-78. doi: 10.13204/j.gyjz200811018
    [20]Ouyang Yu, Wang Peng, Zhang Yunchao. CALCULATION AND ANALYSIS OF FLEXURAL AND SHEAR CAPACITY OF RC BEAMS STRENGTHENED WITH BFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 24-27. doi: 10.13204/j.gyjz200706007
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.9 %FULLTEXT: 6.9 %META: 88.8 %META: 88.8 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.3 %其他: 5.3 %China: 0.6 %China: 0.6 %Taiwan, China: 1.2 %Taiwan, China: 1.2 %[]: 1.6 %[]: 1.6 %上海: 3.4 %上海: 3.4 %东莞: 1.6 %东莞: 1.6 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.9 %兰州: 0.9 %北京: 14.7 %北京: 14.7 %南京: 3.1 %南京: 3.1 %南充: 0.3 %南充: 0.3 %南宁: 0.6 %南宁: 0.6 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %厦门: 0.6 %厦门: 0.6 %台州: 0.3 %台州: 0.3 %合肥: 3.1 %合肥: 3.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %墨尔本: 0.3 %墨尔本: 0.3 %大连: 1.9 %大连: 1.9 %天津: 1.6 %天津: 1.6 %太原: 0.3 %太原: 0.3 %宁波: 0.6 %宁波: 0.6 %宜昌: 0.3 %宜昌: 0.3 %广州: 2.5 %广州: 2.5 %廊坊: 0.3 %廊坊: 0.3 %延安: 0.3 %延安: 0.3 %张家口: 1.9 %张家口: 1.9 %成都: 1.2 %成都: 1.2 %昆明: 0.3 %昆明: 0.3 %朝阳: 0.6 %朝阳: 0.6 %杭州: 3.4 %杭州: 3.4 %武汉: 3.4 %武汉: 3.4 %江门: 0.3 %江门: 0.3 %沈阳: 1.2 %沈阳: 1.2 %洛阳: 0.6 %洛阳: 0.6 %济南: 0.3 %济南: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.9 %温州: 0.9 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.3 %潍坊: 0.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 1.6 %石家庄: 1.6 %福州: 1.6 %福州: 1.6 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 11.6 %芒廷维尤: 11.6 %芝加哥: 2.5 %芝加哥: 2.5 %苏州: 0.3 %苏州: 0.3 %英国: 0.6 %英国: 0.6 %蚌埠: 0.3 %蚌埠: 0.3 %衡水: 0.9 %衡水: 0.9 %西宁: 2.2 %西宁: 2.2 %西安: 2.5 %西安: 2.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 1.2 %贵阳: 1.2 %运城: 3.7 %运城: 3.7 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.6 %郑州: 1.6 %重庆: 1.6 %重庆: 1.6 %铁岭: 0.3 %铁岭: 0.3 %长沙: 0.9 %长沙: 0.9 %雅安: 0.9 %雅安: 0.9 %青岛: 0.3 %青岛: 0.3 %首尔: 0.6 %首尔: 0.6 %其他ChinaTaiwan, China[]上海东莞佛山保定兰州北京南京南充南宁南昌南通厦门台州合肥哈尔滨嘉兴墨尔本大连天津太原宁波宜昌广州廊坊延安张家口成都昆明朝阳杭州武汉江门沈阳洛阳济南深圳温州漯河潍坊焦作石家庄福州绵阳芒廷维尤芝加哥苏州英国蚌埠衡水西宁西安诺沃克贵阳运城邯郸郑州重庆铁岭长沙雅安青岛首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (162) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return