Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Wujun, JIE Zhiyu, CHEN Chao. FATIGUE PERFORMANCE OF CRACKED WELDED CRUCIFORM JOINTS STRENGTHENED BY CFRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 181-187. doi: 10.13204/j.gyjzG20011305
Citation: YE Jinxin, HE Wenfang, LIU Jiaping. A Thermal Shielding Model and Shading Optimization Design for Vernacular Buildings in Extreme Arid Climate Areas[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 7-15,31. doi: 10.13204/j.gyjzG22020705

A Thermal Shielding Model and Shading Optimization Design for Vernacular Buildings in Extreme Arid Climate Areas

doi: 10.13204/j.gyjzG22020705
  • Received Date: 2022-02-07
  • The arid climate of China is mainly distributed in the southern part of Xinjiang, Gansu, Qinghai and northwestern Inner Mongolia and other frontier areas. These areas are classified as severe cold and cold regions in building thermal design zoning, and the energy efficiency of urban buildings mainly emphasizes thermal isolation in winter, while the guidance of passive cooling design in summer is urgently needed. Differently, the local vernacular buildings show climate adaptability, and the shading strategies were used to adjust indoor and outdoor thermal environments, the formed unique passive cooling mode needs to be inherited and developed urgently. For the reason, the Turpan vernacular buildings in extreme arid climate were taken as an example, based on field investigation, the shading objects such as streets, courtyards, roofs, walls and windows, and the shading methods such as grape drying rooms, Ayiwang, elevated trellis, canopies, gable porches, grapevine shelves, permeable walls, and lattice windows were summarized. In addition, through the method of field tests and thermal simulations, a thermal shiledling model for Turpan vernacular buildings was established based on EnergyPlus and its effectiveness was verified. On the basis, the orthogonal test method was applied to evaluate the thermal energy-saving effects of four types of shading objects. The order of thermal shielding effect from large to small was courtyard shading, roof shading, wall shading and window shading, and the best combination of their shading area levels was obtained, i.e., roof shading 100%, wall shading 100%, window shading 25%. Furthermore, according to the existing feasible shading types, the roof grape-drying room and software elevated trellis were recommended as the comprehensive shading for the roof, courtyard, wall and window. Taking the differences in shading needs in different seasons into account, the elevated trellis should apply light-weight construction or grapevine planting method, which was easy to remove in winter.
  • [1]
    BECK H E, ZIMMERMANN N E, MCVICAR T R, et al. Wood:Present and future Köppen-Geiger climate classification maps at 1-km resolution[J/OL].Scientific Data5,2018[2022-07-02].https://doi.org/10.1038/sdata.2018.214.
    [2]
    周扬, 吴文祥, 胡莹, 等.西北地区太阳能资源空间分布特征及资源潜力评估[J].自然资源学报, 2010, 25(10):1738-1749.
    [3]
    杜晓磊. 干热干冷地区民居建筑热环境研究[D].西安:西安建筑科技大学,2013.
    [4]
    黄薇.建筑形态与气候设计[J].建筑学报,1993(2):10-14.
    [5]
    莎莎·阿纱飞,张炯.伊朗炎热干旱地区的建筑特征[J].华中建筑,2012,30(9):44-46.
    [6]
    传统伊朗建筑应对气候的设计策略[C]//2019国际绿色建筑与建筑节能大会论文集.2019:187-192.
    [7]
    赵紫伶,唐飚.埃及建筑师哈桑·法赛之本土实践[J].南华大学学报(自然科学版),2013,27(1):87-90.
    [8]
    吴云涛,翁季,向恒玲,等.基于建筑本土化的适宜技术策略:以巴克里希纳·多西设计思想为例[J].当代建筑,2021(11):6-9.
    [9]
    ZHANG L, YANG L, JELLE B P,et al. Hygrothermal properties of compressed earthen bricks[J]. Construction and Building Materials, 2018,162:576-583.
    [10]
    樊梦媛. 吐鲁番民居被动式太阳能设计方法[D].西安:西安建筑科技大学,2018.
    [11]
    孙莉. 吐鲁番民居室内物理环境实验模拟研究[D].乌鲁木齐:新疆大学,2019.
    [12]
    陈洁, 罗智星, 杨柳. 建筑节能设计用于干热气候区气候特征分析[J]. 城市建筑, 2019, 16(28):48-51.
    [13]
    陈荣芬,茹苏里.吐鲁番盆地干热气候的形成及其利用[J]. 新疆大学学报(自然科学版),1987(1):87-93,101.
    [14]
    何泉,何文芳,杨柳,等. 极端气候条件下的新型生土民居建筑探索[J].建筑学报,2016(11):94-98.
    [15]
    CHANG S, HE W F, YAN H Y, et al. Influences of vernacular building spaces on human thermal comfort in China's arid climate areas[J/OL]. Energy & Building, 2021,244(3/4)[2022-02-07].https://doi.org/10.1016/j.enbuild.2021.110978.
    [16]
    岳邦瑞, 李春静, 李慧敏,等.气候主导下的吐鲁番麻扎村绿洲乡土聚落营造模式研究[J]. 西安建筑科技大学学报(自然科学版), 2011(8):563-569.
    [17]
    陈子莹. 吐鲁番传统民居的空间构成及其气候适应性探究[D]. 乌鲁木齐:新疆大学, 2019.
    [18]
    王烨. 绿洲传统聚落民居的营造与气候适应性技术研究[D]. 乌鲁木齐:新疆大学,2018.
    [19]
    李春静. 干旱区气候环境下的乡土景观设计对策研究[D]. 西安:西安建筑科技大学, 2011.
    [20]
    郭兵. 种植屋面与通风屋面实测结果的对比分析[J]. 节能技术, 2013, 32(4):4547.
    [21]
    SOUBDHAN T, FEUILLARD T, BADE F.Experimental evaluation of insulation material in roofing system under tropical climate[J]. Solar Energy, 2005, 79(3):311-320.
    [22]
    王波, 冉茂宇.不同倾角金属百叶对屋顶遮阳的隔热降温实验研究[J]. 建筑科学, 2018, 34(6):37-42.
    [23]
    张婷玉. 哈密地区传统村落空间形态的特色及更新设计研究[D].长春:吉林建筑大学, 2018.
    [24]
    宋辉. 新疆喀什高台民居营造模式与现代适应性研究[D]. 西安:西安建筑科技大学, 2016.
    [25]
    GOU S, LI Z, ZHAO Q, et al. Climate responsive strategies of traditional dwellings located in an ancient village in hot summer and cold winter region of China[J]. Building & Environment, 2015, 86:151-165.
    [26]
    HUERTO-CARDENAS H E, LEONFORTE F, ASTE N, et al. Validation of dynamic hygrothermal simulation models for historical buildings:state of the art, research challenges and recommendations[J/OL]. Building and Environment, 2020, 180[2022-02-07].https://doi.org/10.1016/j.buildenv.2020,107081.
    [27]
    龚城, 余梦琦, 李曌, 等. 徽州传统民居冬季室内热环境改善研究[J].安徽工业大学学报(自然科学版), 2017,34(2):178-184.
    [28]
    龚城. 徽州传统民居冬季室内热环境形成机理及设计优化研究[D]. 马鞍山:安徽工业大学, 2017.
    [29]
    任艺梅.基于适应性热舒适的吐鲁番农宅室内热环境评价研究[D].西安:西安建筑科技大学,2017.
    [30]
    姚启帆. 基于镶嵌几何的建筑表皮光热性能优化设计研究[D].西安:西安建筑科技大学, 2020.
  • Relative Articles

    [1]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [2]LI Chenghua, GUO Shuai, YANG Kaiyuan. Welding Numerical Simulations of Joints Between Aluminum Alloy Box Columns and H-Shaped Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 89-95. doi: 10.13204/j.gyjzG21100706
    [3]DING Xiaobo, WU Meizhong, FANG Wujun, YUAN Fang, GUO Shijie, LI Weiwen, TANG Shiying. Experimental Research on Shear Fatigue Performance of Concrete Beams Reinforced with CFRP Strip Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 202-208,42. doi: 10.13204/j.gyjzG22081906
    [4]WANG Qingli, ZHANG Yijing, PENG Kuan. Research on Mechanical Properties of CFRP Confined Concrete-Filled Square Steel Tubular Under Bending-Torsion Load[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 181-188. doi: 10.13204/j.gyjzG21121006
    [6]Zhang Yiduo, Hu Qiangsheng, Chen Yu, Liu Ronggui. BENDING PERFORMANCE TEST AND NUMERICAL SIMULATION OF PRESTRESSED CONCRETE BEAMS AFTER FREEZE-THAW[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 27-31. doi: 10.13204/j.gyjz201502007
    [7]Zheng Yun, Yue Qingrui, Chen Xuan, Li Zhongyu. FATIGUE TEST RESEARCH ON CFRP STRENGTHENED STEEL BEAM[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 148-152. doi: 10.13204/j.gyjz201305031
    [8]Zhang Pu, Zhu Hong, Meng Shaoping, Wu Gang, Liu Xiaoyan. THEROTICAL ANALYSIS AND TEST RESEARCH ON HYBRID EFFECT OF CFRP /BFRP HYBRID FIBER[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 103-107,112. doi: 10.13204/j.gyjz201103020
    [9]Liu Haiqing, Li Haijing, Zhao Jianjun. ANALYSIS OF ANTI-SEISMIC PERFORMANCE OF RC FRAME STRUCTURE REINFORCED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 102-106. doi: 10.13204/j.gyjz201012026
    [10]Zhang Jiayuan, Wu Yun, He Peng. RESEARCH ON FATIGUE LIFE OF CFST TUBULAR JOINTS BASED ON BILINEAR MODEL[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 122-125. doi: 10.13204/j.gyjz201011029
    [11]Liu Ronggui, Liu Tao, Zhang Yiduo, Gao Song, Chen Yu. RESEARCH ON A MODEL OF THE INFLUENCE COEFFICIENT FOR PRE-FREEZE-THAWING FATIGUE LIFE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 5-8,20. doi: 10.13204/j.gyjz201006002
    [12]Hu Liang, Ouyang Yu, Tu Mufa. EXPERIMENTAL STUDY ON FATIGUE PROPERTY OF STEEL CRANE BEAM STRENGTHENED BY CFRP[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 110-112,3. doi: 10.13204/j.gyjz201012028
    [13]Yang Zhao, Dai Shaobin. EXPERIMENTAL STUDY AND FINITE ELEMENT ANALYSIS OF BRICK WALL STRENGTHENED BY CFRP[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 124-127. doi: 10.13204/j.gyjz200905028
    [14]Yue Qingrui, Yang Yongxin, Sawulet.Bekey. EXPERIMENTAL STUDY ON NATURAL AGING PROPERTY OF CFRP UNDER DIFFERENT ENVIRONMENTS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(2): 1-3. doi: 10.13204/j.gyjz200802001
    [15]Zhang Ke, Ye Lieping, Yue Qingrui. ANALYSIS OF FATIGUE LIFE OF CONCRETE BEAMS REINFORCED WITH PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 107-112. doi: 10.13204/j.gyjz200807027
    [16]Ding Ya-hong, Zeng Xian-tao, Wang Xing-guo. THE EXPERIMENTAL STUDY OF CONCRETE BEAMS STRENGTHENED WITH NEAR-SURFACE MOUNTED CFRP[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 89-91. doi: 10.13204/j.gyjz200607024
    [17]Liu Rong-gui, Gong Xiang-hua, Li Cheng-ji, LüZhi-tao, Mei Kui-hua. STUDY ON ANCHORING PROPERTY OF CFRP CABLES FOR STAYED BRIDGES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 29-32,67. doi: 10.13204/j.gyjz200608010
    [18]Zheng Yun, Ye Lie-ping, Yue Qing-rui, Dong Jia-lin. PARAMETER STUDY ON STEEL PLATES REINFORCED BY CFRP PLATES WITH FINITE ELEMENT METHOD[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 99-103. doi: 10.13204/j.gyjz200606027
    [19]Li Rong, Teng Jinguang, YueQingrui. EXPERIMENTAL STUDY ON BOND BEHAVIOR OF NSM CFRP STRIPS-CONCRETE INTERFACE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 31-34. doi: 10.13204/j.gyjz200508007
    [20]Zheng Yun, Ye Lieping, Yue Qingrui. FRACTURE MECHANICS ANALYSIS OF STEEL STRUCTURES WITH FATIGUE DAMAGES STRENGTHENED BY CFRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 79-82. doi: 10.13204/j.gyjz200510024
  • Cited by

    Periodical cited type(1)

    1. 常雨曦. Q390A钢焊接接头腐蚀疲劳性能测试研究. 焊接技术. 2023(07): 13-17+129 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.9 %FULLTEXT: 7.9 %META: 91.5 %META: 91.5 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %China: 1.7 %China: 1.7 %Switzerland: 0.6 %Switzerland: 0.6 %六安: 0.6 %六安: 0.6 %北京: 5.1 %北京: 5.1 %南京: 0.6 %南京: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 2.3 %天津: 2.3 %太原: 0.6 %太原: 0.6 %宁波: 1.7 %宁波: 1.7 %安康: 3.4 %安康: 3.4 %宣城: 0.6 %宣城: 0.6 %常德: 0.6 %常德: 0.6 %延安: 1.1 %延安: 1.1 %张家口: 1.1 %张家口: 1.1 %德阳: 0.6 %德阳: 0.6 %成都: 0.6 %成都: 0.6 %昆明: 1.1 %昆明: 1.1 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 2.3 %杭州: 2.3 %湖州: 1.1 %湖州: 1.1 %滨州: 0.6 %滨州: 0.6 %漯河: 2.3 %漯河: 2.3 %濮阳: 0.6 %濮阳: 0.6 %芒廷维尤: 10.7 %芒廷维尤: 10.7 %芝加哥: 0.6 %芝加哥: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 37.9 %西宁: 37.9 %贵阳: 0.6 %贵阳: 0.6 %运城: 8.5 %运城: 8.5 %邯郸: 1.1 %邯郸: 1.1 %郑州: 1.7 %郑州: 1.7 %重庆: 1.1 %重庆: 1.1 %阜阳: 0.6 %阜阳: 0.6 %阳泉: 1.7 %阳泉: 1.7 %其他ChinaSwitzerland六安北京南京嘉兴天津太原宁波安康宣城常德延安张家口德阳成都昆明晋城朝阳杭州湖州滨州漯河濮阳芒廷维尤芝加哥衢州西宁贵阳运城邯郸郑州重庆阜阳阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads(7) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return