Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DU Yongfeng, LI Xiangxiong, ZHANG Chao, LI Chao, Maimaitiming TURDIMAMAT, MA Zhenghe. Monitoring and Analysis for Support Deformation of Complex Seismic Isolation Structures Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 46-52. doi: 10.13204/j.gyjzG22012407
Citation: DU Yongfeng, LI Xiangxiong, ZHANG Chao, LI Chao, Maimaitiming TURDIMAMAT, MA Zhenghe. Monitoring and Analysis for Support Deformation of Complex Seismic Isolation Structures Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 46-52. doi: 10.13204/j.gyjzG22012407

Monitoring and Analysis for Support Deformation of Complex Seismic Isolation Structures Based on Computer Vision

doi: 10.13204/j.gyjzG22012407
  • Received Date: 2022-01-24
    Available Online: 2023-03-22
  • For the ultra-long and complex isolation structures, the isolation supports engendered a large lateral displacement phenomenon easily during construction stages. Real-time and accurate deformation monitoring for isolation supports is an effective basis for guiding construction in progress and judging actual stress of structures. The traditional measurement method of contact displacement is restricted by dimensions, accuracy, complicated operation, and installation, etc. The use of the non-contact measurement method based on computer vision can effectively overcome shortcomings of the traditional method. A displacement monitoring system based on computer vision was proposed. Network cameras were used as acquisition devices, and the color matching technique was used to realize displacement measurement of targets. The system was applied in a large terminal building in the west of China, and used for displacement monitoring of isolation supports in the building, and the monitoring data of deformation and temperature of isolation supports were analyzed. The results showed that the monitoring system based on computer vision could accurately measure deformation of isolation supports, and serve as an automatic and economical intelligent system for the structure for a long time. The deformation law changed with temperature for isolation supports of the ultra-long isolation structure was given.
  • [1]
    GUL M, CATBAS F N, HATTORI H. Image-based monitoring of open gears of movable bridges for condition assessment and maintenance decision making[J]. Journal of Computing in Civil Engineering, 2015, 29(2). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000307.
    [2]
    FAULKNER C, BARTON F W, BABER T T, et al. Determination of bridge response using accleration data[R]. Virginia:Virginia Transportation Research Council, 1996:1-10.
    [3]
    周颖, 张立迅, 刘彤, 等.基于计算机视觉的结构系统识别[J]. 土木工程学报, 2018, 51(11):21-27.
    [4]
    CHEN I H, HO S C, SU M B. Computer vision application programming for settlement monitoring in a drainage tunnel[J]. Automation in Construction,2020, 110. http://doi.org/10.1016/j.autcon.2019.103011.
    [5]
    XU Y, BROWNJOHN J, KONG D. A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge[J]. Structural Control & Health Monitoring, 2018, 25(5):1-23.
    [6]
    YE X W, DONG C Z, LIU T. Image-based structural dynamic displacement measurement using different multi-object tracking algorithms[J]. Smart Structures and Systems, 2016, 17(6):935-956.
    [7]
    叶肖伟, 董传智. 基于计算机视觉的结构位移监测综述[J]. 中国公路学报, 2019,32(11):21-39.
    [8]
    DONG C Z, CATBAS F N. A review of computer vision-based structural health monitoring at local and global levels[J]. Structural Health Monitoring, 2020,20(2). https://doi.org/10.1177/147592172093558.
    [9]
    HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. 2nd ed. Cambridge:Cambridge University Press, 2003.
    [10]
    FISCHLER M A, BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):619-638.
    [11]
    RIBEIRO D, CALÇADA R, FERREIRA J, et al. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system[J]. Engineering Structures, 2014, 75(75)164-180.
    [12]
    BRADSKI G R, LAB M, CLARA S, et al. Computer vision face tracking for use in a perceptual user interface[C]//Fourth IEEE Workshop on Applications of Computer Vision. New York:IEEE, 1998.
    [13]
    FUKUNAGA K, HOSTETLER L. The estimation of the gradient of a density function, with applications in pattern recognition[J]. Information Theory, IEEE Transactions, 1975. 2209000020800909宋成浩.fbd
  • Relative Articles

    [1]FU Dan, BAI Jianwei, CHENG Xiaohui, SHI Xiangsheng, CHEN Haoran, GUO Hongxian, GUAN Wen. Application of Distributed Optical Fiber Sensing in New Modular Building Health Monitoring[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 9-14. doi: 10.3724/j.gyjzG24042503
    [2]YANG Xingyu, CHEN Guangyao, ZHU Juntong, XU Zhao. Application Status and Prospect on Computer Vision Technology Application in Bridge and Tunnel Engineering[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 209-218. doi: 10.3724/j.gyjzG23051209
    [3]CHI Changzheng, PANG Bo, REN Jiangtao, LU Yin, LI Xianzhe, HUANG Mingfeng. A Safety Monitoring Method for High-Formwork Support Structures Based on Computer Vision Recognition[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 65-72. doi: 10.3724/j.gyjzG23121903
    [4]GAO Ke, DENG Deyuan, ZHU Hongping, WENG Shun, GAO Fei. Static and Dynamic Deformation Monitoring of Super High-Rise Buildings During the Construction Stage[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 130-139. doi: 10.3724/j.gyjzG23081112
    [5]LU Peng, ZHAO Tiansong, WANG Jian, CHANG Haosong, ZHENG Yun, LIU Xiaolan. A Method for Detecting Surface Corrosion Degree of Steel Structures Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 133-139. doi: 10.3724/j.gyjzG23062009
    [6]LIU Liang, ZHAO Jun, ZHU Jiao, LI Ximin, SHEN Wentao, ZHANG Renqiang, LIN Dongyang, DAI Ruzhang, YU Peng, CHEN Bin. A New Construction and Erection Technique for Transmission Towers Based on Finite Element Model and Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 64-70,90. doi: 10.13204/j.gyjzG22042602
    [7]SONG Chenghao, CHEN Shucheng, HU Xiaobin, YUAN Huanxin. Crack Monitoring of RC Columns Under Cyclic Loading Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 53-60. doi: 10.13204/j.gyjzG22070112
    [8]LU Peng, ZHAO Tiansong, WANG Jian, ZHAO Lei, CHANG Haosong, ZHENG Yun. Review on Damage Identification and Health Monitoring of Steel Structures Based on Computer Vision[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 22-27. doi: 10.13204/j.gyjzG22071401
    [9]REN Guopeng, PAN Rong, SUN Feng, GUO Xing. INFLUENCE OF DIFFERENT TYPES OF ISOLATION BEARINGS ON ISOLATION PERFORMANCE OF NUCLEAR ISLAND PLANT[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(12): 41-48. doi: 10.13204/j.gyjzG21101113
    [10]CHENG Bei, GENG Pan, LEI Yuande. PERFORMANCE RESEARCH ON LATERAL STIFFNESS OF THE BASE-ISOLATION SHEAR WALL STRUCTURE CONSIDERING VERTICAL DEFORMATION OF ISOLATION BEARING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 24-29. doi: 10.13204/j.gyjz202004005
    [13]Zhuang Peng, Xue Suduo, Han Miao. SEISMIC ISOLATION ANALYSIS OF SMA SPRING-FRICTION BEARINGS IN DOUBLE LAYER SPHERICAL LATTICE SHELL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 43-49. doi: 10.13204/j.gyjz201501008
    [16]Zhang Yan, Li Zhangzheng. NON-LINEAR TIME-HISTORY ANALYSIS OF HIGH-LEVEL ISOLATION STRUCTURE UNDER MULTI-DIMENSIONAL SEIM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 16-20. doi: 10.13204/j.gyjz201104004
    [17]Zhou Kui, Wang Qi, Liu Weidong, Zhang Jian. A SUMMARY REVIEW OF RECENT ADVANCES IN RESEARCH ON STRUCTURAL HEALTH MONITORING FOR CIVIL ENGINEERING INFRASTRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 96-102. doi: 10.13204/j.gyjz200903026
    [18]Wen Bo, Niu Ditao, Zhang Junfa, Zhao Peng. THE RESEARCH ON TEMPERATURE STRESS IN ISOLATION STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(2): 43-48. doi: 10.13204/j.gyjz200802014
    [19]Huang Wei, Feng Dingguo. TEST AND RESEARCH ON SLIDING AND SHOCK INSULATION OF LARGE BAY REINFORCED CONCRETE AND BRICK CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(12): 47-50,79. doi: 10.13204/j.gyjz200512014
  • Cited by

    Periodical cited type(4)

    1. 杜永峰,张超,李虎,王光环,李超,马振和. 超长隔震结构混凝土干缩应变分离与温缩变形预测. 振动与冲击. 2025(04): 253-264 .
    2. 栾翔. 基于机器视觉的桥梁变形监测技术研究. 中国高新科技. 2024(06): 40-42 .
    3. 杜永峰,梁鑫,张超,杨明,于江,李建文. 寒区某超长隔震结构建造全过程温缩变形分析. 湖南大学学报(自然科学版). 2024(05): 179-192 .
    4. 杜永峰,马天军,韩博,李虎. 基于尺度不变特征变换算法(SIFT)立体匹配的结构三维振动位移监测. 工业建筑. 2023(12): 105-112+134 . 本站查看

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 87.6 %META: 87.6 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.4 %其他: 10.4 %上海: 0.4 %上海: 0.4 %东莞: 0.8 %东莞: 0.8 %乌鲁木齐: 2.0 %乌鲁木齐: 2.0 %兰州: 6.0 %兰州: 6.0 %北京: 5.6 %北京: 5.6 %十堰: 1.6 %十堰: 1.6 %南京: 0.4 %南京: 0.4 %南通: 0.4 %南通: 0.4 %合肥: 0.4 %合肥: 0.4 %咸阳: 3.2 %咸阳: 3.2 %哈尔滨: 3.6 %哈尔滨: 3.6 %唐山: 0.4 %唐山: 0.4 %嘉兴: 1.2 %嘉兴: 1.2 %天津: 2.0 %天津: 2.0 %宣城: 1.2 %宣城: 1.2 %常州: 0.8 %常州: 0.8 %常德: 0.4 %常德: 0.4 %广州: 3.6 %广州: 3.6 %廊坊: 1.2 %廊坊: 1.2 %张家口: 1.2 %张家口: 1.2 %扬州: 4.4 %扬州: 4.4 %斯劳: 0.4 %斯劳: 0.4 %昆明: 3.6 %昆明: 3.6 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.6 %杭州: 1.6 %武汉: 0.4 %武汉: 0.4 %江门: 0.4 %江门: 0.4 %沧州: 0.4 %沧州: 0.4 %洛杉矶: 0.4 %洛杉矶: 0.4 %温州: 2.0 %温州: 2.0 %湖州: 0.4 %湖州: 0.4 %漯河: 4.4 %漯河: 4.4 %石家庄: 2.4 %石家庄: 2.4 %芒廷维尤: 5.6 %芒廷维尤: 5.6 %芝加哥: 5.6 %芝加哥: 5.6 %苏州: 0.4 %苏州: 0.4 %衡水: 1.6 %衡水: 1.6 %西宁: 7.6 %西宁: 7.6 %西安: 2.0 %西安: 2.0 %贵阳: 0.4 %贵阳: 0.4 %运城: 2.8 %运城: 2.8 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.6 %郑州: 1.6 %长沙: 3.2 %长沙: 3.2 %其他上海东莞乌鲁木齐兰州北京十堰南京南通合肥咸阳哈尔滨唐山嘉兴天津宣城常州常德广州廊坊张家口扬州斯劳昆明晋城朝阳杭州武汉江门沧州洛杉矶温州湖州漯河石家庄芒廷维尤芝加哥苏州衡水西宁西安贵阳运城邯郸郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (217) PDF downloads(10) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return