Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Yi, TONG Huawei, QIU Rongkang, YUAN Jie. RESEARCH ON MECHANICAL PROPERTIES OF RUBBER-PARTICLE-IMPROVED SOIL CEMENTED BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 8-14,7. doi: 10.13204/j.gyjzG20062207
Citation: CHEN Hang-jie, HE Fei, WANG Xu, CHEN Ming-wei. Research on Influence of Roughness on Shear Characteristics of Interfaces Between Frozen Soil and Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 186-192,213. doi: 10.13204/j.gyjzG22012005

Research on Influence of Roughness on Shear Characteristics of Interfaces Between Frozen Soil and Structures

doi: 10.13204/j.gyjzG22012005
  • Received Date: 2022-01-20
    Available Online: 2023-02-06
  • Large scale construction projects have been carried out on varieties of cold areas with deepening of the Western Development and the Northeast Revitalization Strategy. To ensure the life of construction projects and maintain their normal working states in service periods, the higher bearing capacity and stability are needed to keep for frozen soil and structures. It is characteristic of frozen soil-structure interfaces that the frozen mechanics is the most direct mirror, and the roughness of interfaces is one of important factors influencing characteristics. Therefore,taking roughness as an influencing factor, based on the existing scientific research achievements of shear test research on frozen soil-structure interfaces at home and abroad, it was systematically analyzed from roughness evaluation, effect laws of roughness on mechanical properties and microscopic mechanisms. Based on the Gompertz model, a constitutive model between shear stress and displacement on interfaces was presented by considering the effect of roughness, which could well describe the evolution laws between stress and displacement of interfaces.
  • [1]
    胡黎明, 濮家骝.土与结构物接触面物理力学特性试验研究[J].岩土工程学报, 2001, 23(4):431-435.
    [2]
    UESUGI M, KISHIDA H, TSUBAKIHARA Y.Behavior of sand particles in sand-steel friction[J].Soils and Foundations, 1988, 28(1):107-118.
    [3]
    ROMAN D, HRYCIW M I.Behavior of sand particles around rigid ribbed inclusions during shear[J].Soils and Foundations, 1993, 33(3):1-13.
    [4]
    王天亮, 王海航, 王鸥, 等.粉土与凹槽结构面抗剪强度特性试验研究[J].北京交通大学学报, 2019, 43(3):115-121.
    [5]
    吉延峻, 贾昆, 俞祁浩, 等.现浇混凝土-冻土接触面冻结强度直剪试验研究[J].冰川冻土, 2017, 39(1):86-91.
    [6]
    赵联桢, 杨平, 王海波.大型多功能冻土-结构接触面循环直剪系统研制及应用[J].岩土工程学报, 2013, 35(4):707-713.
    [7]
    孙厚超, 杨平, 王国良.冻黏土与结构接触界面层单剪力学特性试验[J].农业工程学报, 2015, 31(9):57-62.
    [8]
    ALDAEEF A A, RAYHANI M T.Pile-soil interface characteristics in ice-poor frozen ground under varying exposure temperature[J].Cold Regions Science and Technology, 2021, 191.DOI: 10.1016/j.coldregions.2021.103377.
    [9]
    金子豪, 杨奇, 陈琛, 等.粗糙度对混凝土-砂土接触面力学特性的影响试验研究[J].岩石力学与工程学报, 2018, 37(3):754-765.
    [10]
    潘一鸣.冻土-混凝土接触面剪切力学性质试验研究[D].长春:吉林大学, 2020.
    [11]
    杨晨.黄土-基岩接触面特性的环剪试验研究[D].咸阳:西北农林科技大学, 2019.
    [12]
    张嘎, 张建民.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报, 2004, 26(1):21-25.
    [13]
    王永洪, 张明义, 刘俊伟, 等.接触面粗糙度对黏性土-混凝土界面剪切特性影响研究[J].工业建筑, 2017, 47(10):93-97.
    [14]
    杨进财.高温冻土-混凝土接触面剪切蠕变特性试验研究[D].兰州:兰州交通大学, 2020.
    [15]
    王海航.季冻区桩-土接触面力学性能及冻拔力试验研究[D].石家庄:石家庄铁道大学, 2019.
    [16]
    周国庆, 夏红春, 赵光思.深部土-结构接触面与界面层力学特性的直接剪切试验[J].煤炭学报, 2008, 45(10):1157-1162.
    [17]
    田建勃, 韩晓雷, 刘江元.砂土与混凝土接触面力学特性大型单剪试验研究[J].工业建筑, 2012, 42(7):110-114.
    [18]
    周小文, 龚壁卫, 丁红顺, 等.砾石垫层-混凝土接触面力学特性单剪试验研究[J].岩土工程学报, 2005, 27(8):876-880.
    [19]
    FROST J D, DEJONG J T, RECALDE M.Shear failure behavior of granular-continuum interfaces[J].Engineering Fracture Mechanics, 2002, 69(17):2029-2048.
    [20]
    吕鹏, 刘建坤, 崔颖辉.冻土-混凝土接触面动剪强度研究[J].岩土力学, 2013, 34(增刊2):180-183.
    [21]
    何菲, 王旭, 蒋代军, 等.关于冻土与结构接触面特性研究的几点思考[J].地下空间与工程学报, 2016, 12(增刊1):133-139.
    [22]
    崔托维奇H A.冻土力学[M].张长庆, 朱元林, 译.北京:科学出版社, 1985:178-183.
    [23]
    邱国庆, 刘经仁, 刘鸿绪.冻土学辞典[M].兰州:甘肃科学技术出版社, 1994:115-117.
    [24]
    石泉彬, 杨平, 王国良.人工冻结砂土与结构接触面冻结强度试验研究[J].岩石力学与工程学报, 2016, 35(10):2142-2151.
    [25]
    孙厚超, 杨平, 王国良.冻土与结构接触界面层力学试验系统研制及应用[J].岩土力学, 2014, 35(12):3636-3641

    , 3643.
    [26]
    HUCK P J, LIBER T, CHIAPETTA R L, et al.Dynamic response of soil-concrete interface at high pressure[J].Illinois Institute of Technical Research Institute, 1974:132-141.
    [27]
    王涛.粗糙度对砂土-混凝土接触面力学特性影响的试验研究[J].铁道勘察, 2016, 42(6):46-49.
    [28]
    CLOUGH G W, DUNCAN J M.Finite element analyses of retaining wall behavior[J].Journal of Soil Mechanic and Foundation Division, ASCE, 1971, 97(12):1657-1673.
    [29]
    BRANDT J R T.Behavior of soil-concrete interfaces[D].Edmonton:University of Alberta, 1985.
    [30]
    彭凯, 朱俊高, 冯树荣, 等.考虑剪胀与软化的接触面弹塑性模型[J].岩石力学与工程学报, 2013, 32(增刊2):3979-3986.
    [31]
    陈良致, 温智, 董盛时, 等.青藏冻结粉土与玻璃钢接触面本构模型研究[J].冰川冻土, 2016, 38(2):402-408.
    [32]
    何菲.冻结粉土-混凝土界面非线性剪切蠕变特性研究[D].兰州:兰州交通大学, 2019.
    [33]
    夏红春.基于应变梯度塑性理论的土-结构接触面本构模型[J].工业建筑, 2015, 45(6):87-92.
    [34]
    杨林德, 刘齐建.土-结构物接触面统计损伤本构模型[J].地下空间与工程学报, 2006(1):79-82, 86.
    [35]
    杨平, 赵联桢, 王国良.冻土与结构接触面循环剪切损伤模型[J].岩土力学, 2016, 37(5):1217-1223.
    [36]
    王吉权, 邱立春, 朱荣胜, 等.龚帕兹曲线参数估计方法及应用研究[J].数学的实践与认识, 2009, 39(21):74-79.
    [37]
    吕鹏, 刘建坤.冻土与混凝土接触面直剪试验研究[J].铁道学报, 2015, 37(2):106-110.
    [38]
    BIGGAR K W, SEGO D C.The strength and deformation behaviour of model adfreeze and grouted piles in saline frozen soils[J].Canadian Geotechnical Jounral, 2011, 30(2):319-337.
    [39]
    BIGGAR K W, SEGO D C.Field pile load tests in saline permafrost.I.Test procedures and results[J].Canadian Geotechnical Journal, 2011, 30(1):34-35.
    [40]
    安德斯兰德 O B, 洛达尼 B.冻土工程[M]. 2版.杨让宏, 李勇, 译.北京:中国建筑工业出版社, 2011.
    [41]
    温智, 俞祁浩, 马巍, 等.青藏粉土-玻璃钢接触面力学特性直剪试验研究[J].岩土力学, 2013, 34(增刊2):45-50.
  • Relative Articles

    [1]LI Yuhuan, CHANG Haosong, FU Yanqing, REN Zhikuan, CHANG Hailin. Research on S-N Curves of 930 MPa Large-Diameter High-Strength Cold-Rolled Threaded Prestressed Steel Rebars[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 115-122. doi: 10.3724/j.gyjzG23111502
    [2]HU Jianlin, XUE Jinhao, GUO Jiangfeng, MENG Zhipeng, LIU Yang, ZHENG Ruihai. Experimental Study on Influential Factors for Shear Properties of Interfaces Between Anchor Bolts and Soil Under Different Confining Pressures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 200-205. doi: 10.3724/j.gyjzG22090804
    [3]HE Gang, ZHENG Qiqi, YANG Song, LI Dengfeng, MEI Xuefeng, LI Zezhou. Analysis on Mechanical Characteristics of h-Type Anti-Slide Piles and Cantilevered Double-Row Anti-Slide Piles[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 192-197. doi: 10.3724/j.gyjzG22092609
    [4]LIN Wenbin, WANG Bin, GAO Yupeng, KE Jintao, CAO Shenggen, KONG Qiuping. Experimental Study on Disintegration of Strongly Weathered Granular Granite Cemented by MICP in the Seawater Environment[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 1-9. doi: 10.3724/j.gyjzG24031816
    [5]WANG Jiaquan, ZHU Mengke, LIN Zhinan, TANG Ying. Experimental Analysis of Clay Effect and Confining Pressure Effect on Mechanical Properties of Sea Sand[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 157-162. doi: 10.13204/j.gyjzG21121703
    [6]CHEN Hang-jie, HE Fei, WANG Xu, CHEN Ming-wei. Research on Influence of Roughness on Shear Characteristics of Interfaces Between Frozen Soil and Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 186-192,213. doi: 10.13204/j.gyjzG22012005
    [7]CAI Yong, FENG Bing, CHEN Yong, CUI Xu, WANG Hao. NUMERICAL SIMULATIONS OF AXIAL COMPRESSIVE PROPERTIES FOR GFRP PIPES BY THE FILAMENT WINDING METHOD BASED ON THE PROGRESSIVE DAMAGE MODEL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 194-202. doi: 10.13204/j.gyjzG20070105
    [8]ZHANG Qingfeng, WANG Dongquan, YU Guangyun, SUN Liang, LIU Wenhua. INFLUENCES OF MINING DISTURBANCE ON STABILITY FOR RAILWAY EMBANKMENTS OF COAL GANGUE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 118-124,130. doi: 10.13204/j.gyjz20052030
    [9]MA Lu, YU Min, WANG Yuke. COMPRESSION CHARACTERISTICS AND THE MODEL OF COHESIONLESS SOIL WITH CARBONATE SAND[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 132-136. doi: 10.13204/j.gyjzG20101008
    [10]ZHAO Xiaowan, LYU Jin, WANG Meihua, HUANG Mufan, XU Pengxu, PENG Jie. COMPARATIVE EXPERIMENTAL RESEARCH OF MECHANICAL PROPERTIES BETWEEN SAND CEMENTED BY MICROBIALLY INDUCED CARBONATE PRECIPITATION AND CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 15-18,49. doi: 10.13204/j.gyjzG20052521
    [11]WANG Yanxing, LI Chi, GAO Liping, QIN Xiao. DETERMINATION ON PORE STRUCTURE OF MICROBIAL INDUCED MINERALIZATION MATERIALS IN SALT ENVIRONMENT BY NMR[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 1-7. doi: 10.13204/j.gyjzG19092502
    [15]Tan Qian Guo Hongxian Cheng Xiaohui, . EXPERIMENTAL STUDY OF STRENGTH AND DURABILITY OF MICROBIAL CEMENT MORTAR[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 42-47. doi: 10.13204/j.gyjz201507009
    [16]Shi Jianjun, Chen Sili, Xiao Fa, Liu Zuotao, Zhang Jingyu. EXPERIMENTAL STUDY OF MECHANICAL PROPERTIES EFFECTS ON POLYMER CEMENT MORTAR UNDER FREEZING-THAWING ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 19-22. doi: 10.13204/j.gyjz201502005
    [17]Shao Yan, Wang Shichuan, Li Changyong. CORRELATION ANALYSIS OF PHYSICAL AND MECHANICAL CHARACTERISTICS INDEXES OF SOFT SOIL FOR THE LAKESHORE NEW DISTRACT IN HEFEI[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 86-89. doi: 10.13204/j.gyjz201305018
    [18]Cui Yongcheng, Cui Zizhi, Zhou Jian, Zhou Kang, Zhang Min. RESEARCH ON MECHANICAL PROPERTIES OF FLY ASH CEMENT SOIL IN YINCHAN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 105-109,151. doi: 10.13204/j.gyjz201207017
    [19]Tian Jianbo, Han Xiaolei, Liu Jiangyuan. LARGE-SCALE SIMPLE SHEAR TEST ON MECHANICAL PROPERTIES OF INTERFACE BETWEEN SANDY SOIL AND CONCRETE FACE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 110-114. doi: 10.13204/j.gyjz201207018
    [20]Li Weiwen, Yan Zhiliang, Sui Lili, Xing Feng, Cao Zhengliang. THE INFLUENCE OF TEMPERATURE-HUMIDITY CYCLES ON BENDING MECHANICAL BEHAVIOR OF CONCRETE BEAMS STRENGTHENED BY CFRP[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 27-32. doi: 10.13204/j.gyjz201004007
  • Cited by

    Periodical cited type(3)

    1. 张玉洁. 循环荷载下回收轮胎纤维改良路基土动力性能研究. 黑龙江交通科技. 2023(01): 42-45 .
    2. 郑瑞,李峥,康楠. 基于离散元法的纤维改良黄土力学性能研究. 工程勘察. 2023(08): 5-10 .
    3. 史誉州,郑晓燕,房世龙. 基于再生轮胎聚合物纤维和玻璃纤维的沿河软基固化研究. 水运工程. 2022(05): 26-32 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.0 %FULLTEXT: 6.0 %META: 90.2 %META: 90.2 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.4 %其他: 11.4 %China: 2.2 %China: 2.2 %[]: 0.5 %[]: 0.5 %上海: 0.5 %上海: 0.5 %东莞: 0.5 %东莞: 0.5 %乌鲁木齐: 1.6 %乌鲁木齐: 1.6 %北京: 11.4 %北京: 11.4 %南京: 0.5 %南京: 0.5 %南宁: 0.5 %南宁: 0.5 %台州: 2.2 %台州: 2.2 %天津: 0.5 %天津: 0.5 %常州市武进区: 0.5 %常州市武进区: 0.5 %常德: 0.5 %常德: 0.5 %廊坊: 0.5 %廊坊: 0.5 %延安: 2.2 %延安: 2.2 %张家口: 1.1 %张家口: 1.1 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.6 %杭州: 1.6 %桂林: 2.2 %桂林: 2.2 %武汉: 2.2 %武汉: 2.2 %沈阳: 0.5 %沈阳: 0.5 %济南: 1.1 %济南: 1.1 %湖州: 1.6 %湖州: 1.6 %白城: 1.1 %白城: 1.1 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.5 %福州: 0.5 %芒廷维尤: 14.1 %芒廷维尤: 14.1 %葫芦岛: 0.5 %葫芦岛: 0.5 %西宁: 20.5 %西宁: 20.5 %贵阳: 1.6 %贵阳: 1.6 %运城: 9.2 %运城: 9.2 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.2 %郑州: 2.2 %重庆: 0.5 %重庆: 0.5 %阳江: 0.5 %阳江: 0.5 %阳泉: 0.5 %阳泉: 0.5 %黄石: 0.5 %黄石: 0.5 %其他China[]上海东莞乌鲁木齐北京南京南宁台州天津常州市武进区常德廊坊延安张家口晋城朝阳杭州桂林武汉沈阳济南湖州白城石家庄福州芒廷维尤葫芦岛西宁贵阳运城邯郸郑州重庆阳江阳泉黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads(2) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return