Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FENG Cong, YU Jian, XU Yunxia, ZHU Qizhi, ZHANG Jin. EXPERIMENTAL STUDY ON HYDRO-MECHANICAL COUPLING RELAXATION CHARACTERISTICS OF SATURATED SANDSTONE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 154-159. doi: 10.13204/j.gyjzG20122807
Citation: HUANG Ting, LUO Chengwei, JIAO Ao, DAI Guoliang. Oblique Uplift Bearing Characteristics of Rigid Anchor Piles in Dense Sand[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 180-187. doi: 10.13204/j.gyjzG22011905

Oblique Uplift Bearing Characteristics of Rigid Anchor Piles in Dense Sand

doi: 10.13204/j.gyjzG22011905
  • Received Date: 2022-01-19
  • As one of the important foundation types of mooring systems in marine structures, rigid anchor piles often bear oblique upward pulling loads, and the mechanism of oblique uplift resistance is more complex than that of flexible piles. Through numerical simulations and theoretical analysis, the influence of loading modes and pile-soil interface friction coefficients on the oblique uplift capacity of anchor piles was studied. Based on the finite element numerical model, the failure envelope surfaces of anchor piles in different loading modes and friction coefficients were obtained, and it was found that the oblique uplift capacity of anchor piles was significantly influenced by loading modes. Due to the limitation of Mohr-Coulomb Constitutive Model, it was difficult for numerical models to accurately simulate the vertical uplift properties of anchor piles with rough appearances. With the increase of friction coefficients, the vertical uplift capacity of anchor piles increased because of the development of fracture toward soil around piles. The horizontal bearing capacity of anchor piles was relatively accurate calculated by the S-shaped distribution hypothesis of soil resistance. Finally, an envelope model of rigid anchor piles was constructed considering the friction coefficients of pile-soil interfaces.
  • [1]
    刘浩晨, 国振, 王立忠, 等.漂浮式水上光伏电站锚泊系统设计方法[J]. 太阳能学报, 2019, 40(12):3485-3492.
    [2]
    HAJI M, KLUGER J, CARRUS J, et al. Experimental investigation of hydrodynamic response of an ocean uranium extraction machine attached to a floating wind turbine[J]. International Journal of Offshore and Polar Engineering, 2018, 28(3):225-231.
    [3]
    RANDOLPH M, GOURVENEC S. Offshore geotechnical engineering [M].Boca Raton:CRC Press, 2017.
    [4]
    叶邦全.海洋工程用锚类型及其发展综述[J].船舶与海洋工程,2012(3):1-7.
    [5]
    张勋, 黄茂松, 刘莹.考虑砂土密实度影响的单桩竖向循环加载模型试验[J]. 岩土力学, 2016, 37(7):1914-1920.
    [6]
    UKRITCHON B, KEAWSAWASVONG S.Design equations of uplift capacity of circular piles in sands[J/OL]. Applied Ocean Research, 2019, 90[2022-01-19].https://doi.org/10.1016/J.APOR.2019.06.001.
    [7]
    BUCKLEY R M, JARDINE R J, KONTOE S, et al. Ageing and cyclic behaviour of axially loaded piles driven in chalk[J]. Géotechnique, 2018, 68(2):146-161.
    [8]
    CHIOU J S, XU Z W, TSAI C C, et al. Lateral cyclic response of an aluminum model pile in sand[J]. Marine Georesources & Geotechnology, 2017, 36(5): 554-563.
    [9]
    TRUONG P, LEHANE B M, ZANIA V, et al. Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand[J]. Géotechnique, 2018, 69(2): 133-145.
    [10]
    白云, 李大勇, 吴宇旗, 等. 倾斜荷载作用下裙式吸力基础承载特性研究[J]. 广西大学学报(自然科学版), 2018, 43(1):205-211.
    [11]
    RAMADAN M F, BUTT S D, POPESCU R. Offshore anchor piles under mooring forces: centrifuge modeling[J].Canadian Geotechnical Journal, 2013, 50(4): 373-381.
    [12]
    KONG G, ZHOU H, SUN X, et al. Analysis of piles under oblique pullout load using transparent-soil models[J]. Geotechnical Testing Journal, 2015, 38(5): 725-738.
    [13]
    CAO Z, LIU H, KONG G, et al. Physical modelling of pipe piles under oblique pullout loads using transparent soil and particle image velocimetry [J]. Journal of Central South University, 2015, 22(11): 4329-4336.
    [14]
    潘志杰,俞剑,王博伟.砂土中单桩倾斜向抗拔加载试验研究[J].建筑科学, 2020, 36(增刊1):88-93.
    [15]
    HUANG T, O'LOUGHLIN C, GAUDIN C, et al. Drained responseof rigid piles in sand under an inclined tensile load[J]. Géotechnique Letters, 2020, 10(1): 30-37.
    [16]
    张苇, 杜湧, 高建财, 等. 砂土中吸力式单桩极限抗斜拉承载力计算[J]. 广西大学学报(自然科学版), 2018, 43(1):232-239.
    [17]
    BRANSBY M F, RANDOLPH M F. Combined loading of skirted foundations[J]. Géotechnique, 1998, 48(5): 637-655.
    [18]
    LU W, ZHANG G. Influence mechanism of vertical-horizontal combined loads on the response of a single pile in sand[J]. Soils and Foundations, 2018, 58(5): 1228-1239.
    [19]
    刘润, 祁越, 李宝仁, 等. 复合加载模式下单桩复合筒型基础地基承载力包络线研究[J]. 岩土力学. 2016,37(5): 1486-1496.
    [20]
    POULOS H G, DAVIS E H. Pile foundation analysis and design[M].New York:John Wiley and Sons, 1980.
    [21]
    BOLTON M D. The strength and dilatancy of sands[J]. Geotechnique, 1986, 36(1): 65-78.
    [22]
    TIAN Y, ZHENG T, ZHOU T, et al. A new method to investigate the failure envelopes of offshore foundations[C/OL]//ASME 201635th International Conference on Ocean, Offshore and Arctic Engineering,2016[ 2022-01-19].https://doi.org/10.1115/OMAE2016-54513.
    [23]
    ZHANG L, FRANCISCO S, RALPH G. Ultimate lateral resistance to piles in cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1):78-83.
    [24]
    BANG S, JONES K D, KIM K O, et al. Inclined loading capacity of suction piles in sand[J]. Ocean Engineering, 2011, 38(7):915-924.
  • Relative Articles

    [1]LI Junyu, FANG Zhi, TANG Shoufeng, LIAO Yuan, WANG Zhiwei. Experimental Research on Stress Relaxation Properties of CFRP Rods[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 13-21. doi: 10.3724/j.gyjzG24032004
    [2]CHEN Youliang, XIAO Peng, DU Xi, WANG Suran, R. AZZAM. A Damage Constitutive Model for Rock Based on Weibull Distribution Under Coupling Action of Temperature and Confining Pressure[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 160-167. doi: 10.13204/j.gyjzG21030203
    [3]GUO Yongcheng, CHEN Zuogui. RESEARCH OF UNLOADING RATES OF CONFINING PRESSURE UNDER PORE WATER PRESSURE CYCLES ON MECHANICAL PROPERTIES OF SANDSTONE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 93-97,174. doi: 10.13204/j.gyjz202006015
    [10]Xu Hao, Xiao Hongbin, Teng Ke. EXPERIMENTAL STUDY ON SHEAR STRESS RELAXATION CHARACTERISTICS OF NANNING UNSATURATED EXPANSIVE SOIL UNDER THE CONDITION OF SHEARING[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 92-96,91. doi: 10.13204/j.gyjz201104020
    [11]Zhang Tiejun, Yan Yuelan. STUDY ON LOCALIZATION OF MANUFACTURE OF UNDERRELAXATION PRESTRESSED STEEL SHANDS FOR CONTAINMENT OF Ling'ao NUCLEAR POWER PLANT (PHASE-Ⅱ) AND ITS USE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 61-66. doi: 10.13204/j.gyjz200904015
    [12]Li Xibin, . THE COUPLING THERMO-HYDRO-MECHANICAL DYNAMIC RESPONSE OF A SATURATED FOUNDATION UNDER AXISYMMETRIC LOAD[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(11): 72-75,86. doi: 10.13204/j.gyjz200611018
    [13]Zhu Hong, LüZhi-tao, Zhang Ji-wen, Gao Hong, Tang Hui-gong. EXPERIMENTAL STUDY OF RELAXATION PERFORMANCE OF AFRP TENDONS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 62-64,94. doi: 10.13204/j.gyjz200607016
    [14]Li Junhua, Zhao Hongtie, Xue Jianyang, Yang Yong. CONSTITUTIVE MODEL FOR BOND DAMAGE IN SRC STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 69-70,81. doi: 10.13204/j.gyjz200501022
    [15]Ma Haiyan, Shan Jian. FORM-FINDING OF MEMBRANE STRUCTURES BY DYNAMIC RELAXATION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 103-105. doi: 10.13204/j.gyjz200508026
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03012345
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.9 %FULLTEXT: 7.9 %META: 91.0 %META: 91.0 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.0 %其他: 9.0 %China: 2.2 %China: 2.2 %北京: 9.0 %北京: 9.0 %安康: 1.1 %安康: 1.1 %宜昌市西陵区: 1.1 %宜昌市西陵区: 1.1 %宿州: 1.1 %宿州: 1.1 %常德: 2.2 %常德: 2.2 %张家口: 1.1 %张家口: 1.1 %成都: 1.1 %成都: 1.1 %晋城: 1.1 %晋城: 1.1 %朝阳: 1.1 %朝阳: 1.1 %深圳: 1.1 %深圳: 1.1 %芒廷维尤: 12.4 %芒廷维尤: 12.4 %衢州: 1.1 %衢州: 1.1 %西宁: 30.3 %西宁: 30.3 %贵阳: 1.1 %贵阳: 1.1 %运城: 18.0 %运城: 18.0 %邯郸: 1.1 %邯郸: 1.1 %郑州: 2.2 %郑州: 2.2 %重庆: 1.1 %重庆: 1.1 %青岛: 1.1 %青岛: 1.1 %其他China北京安康宜昌市西陵区宿州常德张家口成都晋城朝阳深圳芒廷维尤衢州西宁贵阳运城邯郸郑州重庆青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return