Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
Citation: WU Junhua, KUANG Tangliang, YE Yunxue, ZHAO Guitao. Influence of the Montmorillonite Content and Soil State on Shrinkage Characteristics of Expansive Soil[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 144-149. doi: 10.13204/j.gyjzG22011702

Influence of the Montmorillonite Content and Soil State on Shrinkage Characteristics of Expansive Soil

doi: 10.13204/j.gyjzG22011702
  • Received Date: 2022-01-17
  • To study the influence of the montmorillonite content and soil state on the shrinkage characteristics of expansive soil, shrinkage characteristic tests were conducted on specimens which reflected soil state (in the slurry state, after consolidation, and in compaction state). The test results indicated as the montmorillonite content increased, the shrinkage deformation of the slurry specimens gradually increased, and as the montmorillonite content in pre-consolidated specimens was in a certain range, the differences of shrinkage deformation between specimens were not much, as the montmorillonite content increased to a certain amount, the pre-consolidated specimens would produce obvious shrinkage deformation. For slurry specimens and pre-consolidated specimens, when the montmorillonite content exceeded a specific value, the curvature in the residual shrinkage stage of soil shrinkage characteristic curves (SSCC) would constantly decrease. Comparing with the shrinkage limit obtained from the graphic method, the calculated values was closer to the actual value. When the SSCC was a broken line, the calculated shrinkage limit equaled to the value by the graphic method. The influence of the montmorillonite content on the shrinkage characteristics of expansive soil was greater than that of the soil state.
  • [1]
    姚海林, 郑少河, 陈守义. 考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2001, 23(5): 606-609.
    [2]
    TAN Y, ZHANG H Y, WANG Y. Evaporation and shrinkage processes of compacted bentonite-sand mixtures[J]. Soils and Foundations, 2020, 60(2): 505-519.
    [3]
    YESILLER N, MILLER CJ, INCI G, et al. Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1/2): 105-121.
    [4]
    张琦. 膨胀土干燥收缩特性试验研究[D]. 南京: 南京大学, 2014.
    [5]
    栾茂田, 汪东林, 杨庆, 等. 非饱和重塑土的干燥收缩试验研究[J]. 岩土工程学报, 2008, 30(1): 118-122.
    [6]
    吴珺华, 袁俊平, 杨松, 等. 膨胀土湿胀干缩特性试验[J]. 水利水电科技进展, 2012, 32(3): 28-31.
    [7]
    赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146.
    [8]
    刘观仕, 陈永贵, 曾宪云, 等. 环境湿度与温度对压实膨胀土裂隙发育影响试验研究[J]. 岩土工程学报, 2018, 42(2): 260-268.
    [9]
    杨俊, 许威. 冻融循环下风化砂改良膨胀土有荷膨胀率试验及模型预估[J]. 工业建筑, 2015,45(1): 113-117.
    [10]
    王艳涛, 程谦恭, 王小芳, 等. 石灰改良膨胀土高铁路堤离心模型对比试验研究[J]. 工业建筑, 2017, 47(7): 96-101.
    [11]
    刘宇翼, 周国庆, 苏运河, 等. 聚苯乙烯泡沫塑料颗粒-膨胀土混合料的胀缩特性试验研究[J]. 工业建筑, 2017, 47(5): 90-95.
    [12]
    汪亦显, 郭盼盼, 单生彪, 等. 合肥膨胀土阳离子改良试验及微观机制分析[J]. 工业建筑, 2015, 45(9): 104-109.
    [13]
    顾鹏, 徐洪钟, 孙义杰, 等. 基于分布式应变感测的纤维加筋膨胀土干缩湿胀特性试验[J]. 南京工业大学学报(自然科学版), 2018, 40(5): 112-117.
    [14]
    CHERTKOV V Y. Modelling the shrinkage curve of soil clay pastes[J]. Geoderma, 2003, 112(1/2): 71-95.
    [15]
    GROENEVELT P H, GRANT C D. Curvature of shrinkage lines in relation to the consistency and structure of a Norwegian clay soil[J]. Geoderma, 2002, 106(3/4): 235-245.
    [16]
    CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2010, 57(2): 258-268.
    [17]
    DAO M H, 刘清秉, 黄伟,等. 膨润土加砂混合物干燥收缩特征及缩裂机制研究[J]. 岩土力学, 2020, 41(3): 789-798.
    [18]
    孙德安, 高游. 不同制样方法非饱和土的持水特性研究[J]. 岩土工程学报, 2015, 37(1): 91-97.
    [19]
    唐朝生, 崔玉军, Tang A M, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279.
    [20]
    郑军, 阎长虹, 夏良斌, 等. 苏州阳澄湖地区淤泥质黏土工程地质特性探讨[J]. 工程地质学报, 2006, 14(5): 592-596.
    [21]
    黄志全, 樊柱军, 潘向丽, 等. 水位变化下膨胀土岸坡渗流场和稳定性分析[J]. 人民黄河, 2012, 34(1): 120-122.
    [22]
    GROENEVELT P H, GRANT C D. Analysis of soil shrinkage data[J]. Soil & Tillage Research, 2004, 79(1): 71-77.
  • Relative Articles

    [1]JIN Nan, WU Yongjingbang, SHI Zhongqi, YUE Qingrui, ZHENG Zexing. Research on Methods for Detection and Localization of Color Steel Tile Buildings[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 58-64. doi: 10.3724/j.gyjzG23120810
    [2]WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305
    [3]ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611
    [4]FAN Cunjun, JIN Songyan, JIN Nan, SHI Zhongqi, WU Yongjingbang, HAO Xintian. Crack Recognition and Quantitative Analysis Based on Deep Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 126-132. doi: 10.3724/j.gyjzG24061802
    [5]YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
    [6]FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618
    [7]LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
    [8]LI Rui, ZHANG Chun. RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 177-183. doi: 10.13204/j.gyjzg20103011
    [9]ZHOU Yiyi, WANG Jin, LI Jiannan, JIAN Huicheng, ZHOU Qiang, HU Jiayi. STRUCTURAL LAYOUT AND SEISMIC ANALYSIS OF THE SPHERICAL EXHIBITION CENTER IN SUZHOU HIGH SPEED RAILWAY NEW CITY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 204-212. doi: 10.13204/j.gyjzG20102206
    [10]HU Weibing, YANG Jia, WANG Long, HOU Yanfang. STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 71-77,111. doi: 10.13204/j.gyjzG20020501
    [11]Guo Man-liang, Huang Chao-jie, Ling Jiang, Xiao Ming. INTRODUCTION TO PROPOSALS FOR INTERNATIONAL DESIGN COMPETITION FOR SHENZHEN UNIVERSIDE SPORTS CENTRE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 113-119,82. doi: 10.13204/j.gyjz201210024
    [12]Chen Zhihua, Weng Kai, Liu Hongbo, Yan Renzhang, Bu Yidu. THE RESEARCH STATUS AND ENGINEERING APPLICATION OF STAINLESS STEEL ON SPACE GRID STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 55-62,54. doi: 10.13204/j.gyjz2011205009
    [13]Wang Cheng Zhang Yigang Tan Zhengguang, . ANALYSIS OF LOADING PROCESS OF THE IRSSP AFFECTED BY WEB MEMBER[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 89-92. doi: 10.13204/j.gyjz200811022
    [14]Hong Jinxiang, Huang Wei, Miao Changwen. STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 47-49. doi: 10.13204/j.gyjz200407013
  • Cited by

    Periodical cited type(3)

    1. 周建. 基于长短期记忆网络的田径运动员专项体能训练即时数据采集. 兰州文理学院学报(自然科学版). 2023(03): 107-112 .
    2. 李红民,王健,闫凯. 基于多传感器数据融合的空间结构健康状态评估方法. 建筑结构学报. 2023(S1): 364-371 .
    3. 王健,李红民,闫凯. 基于突变理论的空间钢结构稳定性研究. 山东建筑大学学报. 2023(05): 33-39 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 89.2 %META: 89.2 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %其他: 0.5 %其他: 0.5 %[]: 1.0 %[]: 1.0 %临汾: 0.5 %临汾: 0.5 %北京: 10.8 %北京: 10.8 %南京: 1.5 %南京: 1.5 %台州: 0.5 %台州: 0.5 %合肥: 2.0 %合肥: 2.0 %咸阳: 0.5 %咸阳: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.0 %天津: 1.0 %宣城: 1.0 %宣城: 1.0 %常州: 1.0 %常州: 1.0 %常德: 0.5 %常德: 0.5 %开封: 0.5 %开封: 0.5 %张家口: 2.9 %张家口: 2.9 %扬州: 0.5 %扬州: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %枣庄: 0.5 %枣庄: 0.5 %济南: 1.5 %济南: 1.5 %湖州: 0.5 %湖州: 0.5 %漯河: 1.5 %漯河: 1.5 %芒廷维尤: 31.9 %芒廷维尤: 31.9 %芝加哥: 0.5 %芝加哥: 0.5 %莫斯科: 1.0 %莫斯科: 1.0 %西宁: 16.7 %西宁: 16.7 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 6.9 %运城: 6.9 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.0 %郑州: 2.0 %重庆: 0.5 %重庆: 0.5 %长沙: 1.5 %长沙: 1.5 %青岛: 1.0 %青岛: 1.0 %其他其他[]临汾北京南京台州合肥咸阳大连天津宣城常州常德开封张家口扬州晋城朝阳枣庄济南湖州漯河芒廷维尤芝加哥莫斯科西宁西安贵阳运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(4) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return