Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Tong Genshu, Jin Jian. RESIDUAL STIFFNESS ASSURING STABILITY OF REAL STEEL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 1-7,53. doi: 10.13204/j.gyjz201304001
Citation: CHONG Xun, ZHOU Jiangnan, YE Xianguo, XIE Linlin, WANG Decai, JIANG Qing, HUANG Junqi. State of the Art in Research on Superimposed Shear Wall Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 1-11,110. doi: 10.13204/j.gyjzG22010302

State of the Art in Research on Superimposed Shear Wall Structures

doi: 10.13204/j.gyjzG22010302
  • Received Date: 2022-01-03
  • Superimposed shear wall is a kind of semi-precast superimposed element composed of two precast concrete wall boards and the cast-in-place concrete in the cavity. It has the advantages of good integrity, high production efficiency and low cost, and thus has broad application prospects. Researchers at home and abroad have studied the seismic and mechanical properties of this kind of structure systematically. Some modifications have also been made, and a variety of superimposed shear walls with new construction manners, new materials and new connectors have been proposed and studied. Except for above-ground building structures, superimposed walls have also been applied in underground structures with high requirements for waterproof performance, such as basement exterior walls, underground comprehensive pipe galleries and subway stations, etc. The state of the art of research on the various superimposed walls in different application fields was reviewed.
  • [1]
    叶献国,张丽军,王德才,等. 预制叠合板式混凝土剪力墙水平承载力实验研究[J]. 合肥工业大学学报(自然科学版),2009,32(8):1215-1218.
    [2]
    连星. 叠合板式剪力墙的抗震性能试验分析及理论研究[D]. 合肥:合肥工业大学,2009.
    [3]
    章红梅,吕西林,段元锋,等. 半预制钢筋混凝土叠合墙(PPRC-CW)非线性研究[J]. 土木工程学报,2010,43(增刊2):93-100.
    [4]
    王滋军,刘伟庆,卢吉松,等. 钢筋混凝土无洞叠合剪力墙低周反复荷载试验[J]. 南京工业大学学报,2011,33(6):5-11.
    [5]
    魏威,叶燕华,王滋军,等. 新型钢筋混凝土叠合剪力墙抗震性能试验研究[J]. 混凝土,2011(6):15-18.
    [6]
    王滋军,刘伟庆,叶燕华,等. 钢筋混凝土开洞叠合剪力墙抗震性能试验研究[J]. 建筑结构学报,2012,33(7):156-163.
    [7]
    蒋庆,叶献国,种迅. 叠合板式剪力墙的力学计算模型[J]. 土木工程学报,2012,45(1):8-12.
    [8]
    肖全东,郭正兴. 装配式混凝土双板剪力墙低周反复荷载试验[J]. 东南大学学报(自然科学版),2014,44(4):826-831.
    [9]
    种迅,叶献国,蒋庆,等. 水平拼缝部位采用强连接叠合板式剪力墙抗震性能研究[J]. 建筑结构,2015,45(10):43-48.
    [10]
    种迅,万金亮,蒋庆,等. 水平拼缝部位增强叠合板式剪力墙抗震性能试验研究[J]. 工程力学,2018,35(4):107-114.
    [11]
    代桂霞,鲁亮,潘陵娣. 预制钢筋混凝土叠合剪力墙抗震性能试验研究[J]. 工程力学,2017,34(增刊1):202-209.
    [12]
    安徽省质量技术监督局. 叠合板混凝土剪力墙结构技术规程:DB 34/T 810-2008[S]. 北京:中国建筑工业出版社,2008.
    [13]
    浙江省住房和城乡建设厅. 叠合板式混凝土剪力墙结构技术规程:DB 33/T 1120-2016[S]. 北京:中国计划出版社,2016.
    [14]
    薛伟辰,俞鹏程,刘硕,等. 双面叠合剪力墙竖向钢筋连接构造优化研究[J]. 施工技术,2018,47(12):25-29.
    [15]
    王晶秋. 不同轴压比双面叠合剪力墙抗震性能研究[D]. 大连:大连理工大学,2019.
    [16]
    董格,谷倩,谭园,等. 水平拼缝连接方式对双面叠合剪力墙抗震性能影响的试验研究[J]. 振动与冲击,2020,39(2):107-114.
    [17]
    崔瑶,王晶秋,郁银泉,等. 双面叠合剪力墙压弯性能的数值模拟分析[J]. 北京工业大学学报,2020,46(8):851-860.
    [18]
    赵作周,王晶秋,郁银泉,等. 低轴压比下预制边缘构件双面叠合剪力墙抗震性能试验研究[J]. 建筑结构学报,2021,42(3):63-71.
    [19]
    沈小璞,马巍,陈信堂,等. 叠合混凝土墙板竖向拼缝连接抗震性能试验研究[J]. 合肥工业大学学报(自然科学版),2010,33(9):1366-1371.
    [20]
    张伟林,沈小璞,吴志新,等. 叠合板式剪力墙T型、L型墙体抗震性能试验研究[J]. 工程力学,2012,29(6):196-201.
    [21]
    种迅,叶献国,徐林,等. 半装配式工字形横截面钢筋混凝土剪力墙抗震试验研究[J]. 工程力学,2013,30(2):247-253.
    [22]
    种迅,叶献国,徐勤,等. 工字形横截面叠合板式剪力墙低周反复荷载下剪切滑移机理与数值模拟分析[J]. 土木工程学报,2013,46(5):111-116.
    [23]
    钱鑫. 新型水平连接预制叠合板式混凝土剪力墙抗震性能试验研究[D]. 哈尔滨:哈尔滨工业大学,2017.
    [24]
    肖波,李检保,吕西林. 预制叠合剪力墙结构模拟地震振动台试验研究[J]. 结构工程师,2016,32(3):19-126.
    [25]
    徐自然,崔家春. 水平缝对双面叠合剪力墙结构整体抗震性能影响研究[J]. 建筑结构,2019,49(4):43-48.
    [26]
    郝杰,叶燕华,孙锐,等. 型钢混凝土叠合剪力墙承载力试验与理论研究[J]. 建筑科学,2016,32(11):96-101.
    [27]
    王滋军,李向民,王宇,等. 带有约束边缘构件的预制叠合剪力墙抗震性能试验研究[J]. 中南大学学报(自然科学版),2016,47(8):2759-2767.
    [28]
    朱春磊,叶燕华,徐卢俊,等. 拼缝构造对自密实混凝土叠合剪力墙抗震性能的影响[J]. 南京工业大学学报(自然科学版),2018,40(6):90-95.
    [29]
    JIANG Q, SHEN J, CHONG X. Experimental and numerical studies on the seismic performance of superimposed reinforced concrete shear walls with insulation[J]. Engineering Structures, 2021, 240.DOI: 10.1016/j.engstruct.2021.112372.
    [30]
    陈明. 自保温叠合板式剪力墙结构抗震性能研究[D]. 合肥:合肥工业大学,2020.
    [31]
    SCHNELL J, ABRAMSKI M. Push-out versuche an sandwichwänden ohne wärmedämmung mit kap-wellträger als verbundmittel:N538-09051Ab[R]. Kaiserslautern, Germany:Kaiserslautern TU, 2009.
    [32]
    KLUG Y, HOLSCHEMACHER K. Textile reinforced slabs and prefabricated double walls[C]//The 3rd International Conference on Structural Engineering, Mechanics and Computation. South Africa:Cape Town, 2007.
    [33]
    BINICI B, CANBAY E, DUCIA F, et al. Seismic behavior of double walls with continuity reinforcement[C]//11th Canadian Conference on Earthquake Engineering. Victorica:2015.
    [34]
    ALDEMIR A, BINICI B, CANBY E. Cyclic testing of reinforced concrete double walls[J]. ACI Structural Journal, 2017, 114(2):395-406.
    [35]
    PHILIPP P, JOHANN K. Double-wall elements made of UHPC[J]. Beton-und Stahlbetonbau, 2017, 112(6):346-354.
    [36]
    HOLSCHEMACHER K. Application of textile reinforced concrete in precast concrete industry[J]. Materials Science and Engineering, 2020,753(4):1-6.
    [37]
    张鹏飞,初明进,钱增志,等. 钢筋模板一体化剪力墙受弯性能试验研究[J]. 建筑结构学报,2022,43(3):128-137.
    [38]
    王滋军,刘伟庆,翟文豪,等. 新型预制叠合剪力墙抗震性能试验研究[J]. 中南大学学报(自然科学版),2015,46(4):1410-1419.
    [39]
    张诗浩,叶燕华,孙锐,等. 型钢自密实混凝土叠合剪力墙抗震性能试验[J]. 南京工业大学学报(自然科学版),2015,37(6):87-93.
    [40]
    侯和涛,马天翔,曲哲,等. 预制带肋叠合整体式剪力墙拟静力试验研究[J]. 建筑结构,2016,46(10):14-19.
    [41]
    侯和涛,程积润,曲哲,等. 钢管混凝土边缘约束叠合剪力墙抗震试验研究[J]. 湖南大学学报(自然科学版),2017,44(5):27-36.
    [42]
    侯和涛,颜雪雪,程积润,等. 不同轴压比钢管混凝土边缘约束叠合剪力墙的抗震性能[J]. 土木与环境工程学报(中英文),2019,41(5):73-81.
    [43]
    汪梦甫,邹同球. 带暗支撑预制叠合剪力墙抗震性能试验研究[J]. 湖南大学学报(自然科学版),2017,44(1):54-64.
    [44]
    吴曦,汪梦甫. 预制叠合剪力墙新型连接节点抗震性能研究[J]. 地震工程与工程振动,2019,39(4):73-85.
    [45]
    汪梦甫,陈遵胜. 带可更换墙脚构件的叠合板混凝土剪力墙抗震性能试验研究[J]. 工程抗震与加固改造,2020,42(5):54-62.
    [46]
    熊焱,赵国伟,吴迪,等. 自密实再生块体混凝土叠合剪力墙抗震性能试验研究[J].建筑结构学报,2021.DOI.10.14006/j.jzjgxb.2020.

    0472.
    [47]
    王俊,田春雨,杨思忠,等. 纵肋叠合装配整体式混凝土剪力墙抗震性能试验研究[J]. 建筑结构,2021,51(5):1-7.
    [48]
    侯和涛,叶海登,马天翔,等. 叠合整体式混凝土剪力墙轴心受压性能研究[J]. 建筑结构学报,2016,37(3):76-85.
    [49]
    马天翔. 叠合整体式混凝土剪力墙偏心受压与抗震性能试验研究[D]. 济南:山东大学,2016.
    [50]
    薛伟辰,李亚,蔡磊,等. 双面叠合混凝土剪力墙平面内和平面外抗震性能研究[J]. 工程力学,2018,35(5):47-53.
    [51]
    谷倩,任靖,张延宾,等. 双面叠合剪力墙平面外受力性能[J].建筑科学与工程学报,2020,37(4):32-41.
    [52]
    KERKENI N, HEGGER J, KAHMER H. Mindestbewehrung von weißen Wannen aus Doppelwänden[J]. Beton-und Stahlbetonbau, 2002, 97(1):1-7.
    [53]
    田子玄. 装配叠合式混凝土地下综合管廊受力性能试验研究[D]. 哈尔滨:哈尔滨工业大学,2016.
    [54]
    种迅,方宜成,蒋庆,等. 嵌入式基础叠合式地下室外墙板受力性能与嵌入深度研究[J]. 土木工程学报,2017,50(3):44-53.
    [55]
    魏奇科,王宇航,王永超,等. 叠合装配式地下综合管廊节点抗震性能试验研究[J]. 建筑结构学报,2019,40(2):246-254.
    [56]
    杨秀仁. 我国预制装配式地铁车站建造技术发展现状与展望[J]. 隧道建设(中英文),2021,41(11):1849-1870.
    [57]
    KIM S, LEE D E, KIM Y, et al. Development and application of precast concrete double wall system to improve productivity of retaining wall construction[J]. Sustainability, 2020, 12(8):3454.
    [58]
    侯和涛,陈磊,程佑东,等. 预制混凝土叠合板钢筋黏结性能的研究[J]. 混凝土与水泥制品,2016(2):63-68.
    [59]
    崔家春,樊骅,王春江,等. 双面叠合装配式剪力墙竖向连接钢筋锚固性能静力试验研究[J]. 建筑结构,2017,47(12):95-101.
    [60]
    辛丽婷,王春江,王平山,等. 混凝土强度对预制叠合板连接钢筋锚固性能的影响[J]. 工业建筑,2018,48(1):74-79.
    [61]
    SAGAN V E, GERGELY P, WHITE R N. Behavior and design of noncontact lap splices subjected to repeated inelastic tensile loading[J]. ACI Structural Journal, 1991, 88(4):420-431.
    [62]
    周剑. 预制混凝土空心模剪力墙应用技术研究[D]. 北京:清华大学,2015.
    [63]
    张云峰. 预制叠合板式混凝土剪力墙纵筋连接及其抗震性能研究[D]. 哈尔滨:哈尔滨工业大学,2017.
    [64]
    孟凡林,孟祥瑞,唐旭,等. 灌芯装配式混凝土剪力墙竖向分布钢筋搭接试验[J]. 建筑结构,2017,47(10):89-91.
    [65]
    吕颖,纪晓东,韩文龙,等. 各规范钢筋间接搭接设计方法对比研究[J]. 建筑结构,2019,49(11):20-27.
    [66]
    李洪臣,田春雨,周剑,等. 夹芯保温叠合剪力墙竖向分布钢筋间接搭接性能单向拉伸试验研究[J]. 建筑科学,2020,36(5):68-74.
    [67]
    湖南省住房和城乡建设厅. 混凝土装配-现浇式剪力墙结构技术规程:DBJ 43/T 301-2015[S]. 长沙:湖南科学技术出版社,2015.
    [68]
    上海市住房和城乡建设管理委员会. 装配整体式叠合剪力墙结构技术规程:DG/TJ 08-2266-2018[S]. 上海:同济大学出版社,2018.
    [69]
    河北省住房和城乡建设厅. 装配整体式叠合剪力墙结构技术标准:DB 13(J)/T 8339-2020[S]. 北京:中国建材工业出版社,2020.
    [70]
    湖南省住房和城乡建设厅. 湖南省装配整体式混凝土叠合剪力墙结构技术规程:DBJ 43/T 342-2019[S]. 北京:中国建筑工业出版社,2019.
    [71]
    湖北省住房和城乡建设厅. 装配整体式混凝土叠合剪力墙结构技术规程:DB 42/T 1483-2018[S]. 武汉:武汉理工大学出版社,2019.
    [72]
    山东省住房和城乡建设厅. 预制双面叠合混凝土剪力墙结构技术规程:DB 37/T 5133-2019[S]. 北京:中国建筑工业出版社,2019.
    [73]
    四川省住房和城乡建设厅. 四川省装配整体式叠合剪力墙结构技术标准:DBJ 51/T 113-2019[S]. 成都:西南交通大学出版社,2019.
    [74]
    安徽省市场监督管理局. 叠合板式混凝土剪力墙结构技术规程:DB 34/T 810-2020[S]. 北京:中国建筑工业出版社,2020.
    [75]
    河南省住房和城乡建设厅. 装配整体式叠合剪力墙结构技术标准:DBJ 41/T234-2020[S]. 北京:中国建筑工业出版社,2020.
    [76]
    广东省住房和城乡建设厅. 装配整体式叠合剪力墙结构技术规程:DBJ/T 15-210-2021[S]. 北京:中国建筑工业出版社,2021.
    [77]
    中国工程建设标准化协会. 纵肋叠合混凝土剪力墙结构技术规程:T/CECS 793-2020[S]. 北京:中国建筑工业出版社,2020.
    [78]
    中华人民共和国住房和城乡建设部. 装配式混凝土建筑技术标准:GB/T 51231-2016[S].北京:中国建筑工业出版社,2016.
    [79]
    安徽省市场监督管理局. 叠合板式混凝土剪力墙结构施工及验收规程:DB 34/T 1468-2021[S]. 北京:中国建筑工业出版社,2021.
  • Relative Articles

    [1]LONG Weiguo, LI Qiuji, LIU Yifeng, LU Wenfan, OU Jiajia, PAN Peng. Research on Lateral Resistance of Small-Section Wooden Frame Shear Walls with Different Post-Beam Connections and Cladding Panel Types[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(8): 135-144,117. doi: 10.13204/j.gyjzG22090806
    [2]YUE Fengjiang, YANG Furu, FANG Xibing, ZHAO Wen. A Numerical Method for Eigenvalue Buckling Analysis of Grid Structures[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 161-167. doi: 10.13204/j.gyjzG21091406
    [3]HAN Dongdong, MEN Yuming, WANG Peng. MODEL TESTS ON INFLUENCES OF STIFFNESS AND SPACING FOR BEAMS ON LATTICE BEAMS BY PRESTRESSED ANCHORAGE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 136-141. doi: 10.13204/j.gyjzG20052107
    [4]WANG Zhile, YUAN Xuefeng, JIANG Rongbin. STUDY ON MECHANICAL PROPERTIES OF BEAM BRIDGE REINFORCED WITH MULTIPLE REINFORCEMENT METHODS UNDER CORROSIVE ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 174-177,183. doi: 10.13204/j.gyjzG20051604
    [5]Xia Zhanghua, Li Jiawei, Xia Jian, Lin Jintao. SEISMIC PERFORMANCE ASSESSMENT OF BRICK MASONRY STRUCTURES WITH PRECAST SLABS BASED ON DETERIORATION OF FREQUENCY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 92-97. doi: 10.13204/j.gyjz201504017
    [6]Wang Chequan, Shen Bo, Ma Kejian, Xie Chengji, Li Meng. DESIGN AND ANALYSES OF HYBRID-STRUCTURE BY REGULAR TRIANGULAR SPATIAL TRUSSES AND SINGLE-LAYER CYLINDRICAL RETICULATED SHELLS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 130-134. doi: 10.13204/j.gyjz201406028
    [7]Tang Lei, Guo Zhengxing, Ding Guiping. STRUCTURAL PERFORMANCE TEST RESEARCH ON THE NEW STEEL BAR TRUSS CONCRETE SUPERIMPOSED TWO-WAY SLAB[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 49-53. doi: 10.13204/j.gyjz201311012
    [8]Meng Xian-de, Long Ping, Zhang Xin, Hu Xin-wei, Zhao Xu-qian. RESEARCH ON BRACE-FRAME JOINTS OF HIGH-RISE STEEL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 137-141. doi: 10.13204/j.gyjz201210028
    [9]Li Yurong, Cai Kangfeng, Tang Yue. STUDY AND NEW DESIGN METHOD FOR CHEVRON-BRACED STEEL FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 116-121,130. doi: 10.13204/j.gyjz201011028
    [10]Wang Dengfeng, Cao Pingzhou. INVESTIGATION INTO THE STABILITY OF LARGE SCALE THIN-WALLED STEEL CYLINDRICAL SHELLS UNDER SEVERE DISASTER OF ICE AND SNOW[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 120-125. doi: 10.13204/j.gyjz200910027
    [11]Wang Zhi-bin, Tao Zhong. DESIGN OF CONCRETE-FILLED THIN-WALLED STIFFENED STEEL TUBULAR STUB COLUMNS WITH SQUARE SECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 13-17. doi: 10.13204/j.gyjz200712003
    [12]Zhang Weixi, Chen Ping, Zhao Dong, Mao Xiaofei. ANALYSIS AND STRENGTHENING OF STRUCTURAL DEFECTS OF THE SOUTHWESTERN BIG TEMPLE IN ANCIENT CITY OF GAOCHANG[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 86-88,106. doi: 10.13204/j.gyjz200708022
    [13]Li Guangxing, Cai Jian, Wang Lin, Huang Yansheng. STUDY ON RIGIDITY OF TRANSVERSE TORSION MEMBER OF REINFORCED CONCRETE FLAT PLATE_SPECIAL_SHAPED COLUMN CONNECTION[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 33-37. doi: 10.13204/j.gyjz200703010
    [14]Zhang Da-jie, Tian Xiao-feng, Hou Hao-bo, Liu Hao, Tan Shi-kang. EXPERIMENTAL RESEARCH ON TAKING STABILIZED OVERWETTED SOIL AS ROADBED FILLER[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 38-40. doi: 10.13204/j.gyjz200607009
    [15]Chen Linzhi, Li Zhangzheng. INFLUENCE OF OUTRIGGER ON SPATIAL PERFORMANCE OF TUBE-IN-TUBE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 23-25. doi: 10.13204/j.gyjz200510008
    [16]Zhao Lunyu, Shi Xudong, Zhou Jiankang. EXPERIMENTAL INVESTIGATION ON INTEGRITY OF WALL-BEAM-COLUMN COMBINED STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 60-63. doi: 10.13204/j.gyjz200508015
    [17]Guo Lanhui, Zhang Sumei, Wang Yuyin, Liu Jiepeng. EXPERIMENTAL AND ANALYTICAL RESEARCH ON AXIALLY LOADED SLENDER HIGH STRENGTH CONCRETE-FILLED RHS TUBES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 75-79. doi: 10.13204/j.gyjz200503026
    [18]Yin Lingfeng, Guo Xiaoming, Zhao Huilin, . SUMMARY OF KEY THEORIES AND SOFTWARE DEVELOPMENT OF SHEET SPACE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 14-18. doi: 10.13204/j.gyjz200411004
    [19]Liao Ying. THE RELIABILITY STUDY ON STABILITY OF BRACING STRUCTURE FOR EXCAVATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(1): 54-56. doi: 10.13204/j.gyjz200401015
    [20]Tong Genshu, Chen Haixiao. OUT-OF-PLANE EFFECTIVE LENGTH OF COLUMNS WITHOUT LONGITUDINAL BRACES FOR MILL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 59-61. doi: 10.13204/j.gyjz200405018
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 82.6 %META: 82.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.6 %其他: 7.6 %Canada: 6.8 %Canada: 6.8 %China: 1.5 %China: 1.5 %上海: 4.5 %上海: 4.5 %丽水: 1.5 %丽水: 1.5 %乌鲁木齐: 0.8 %乌鲁木齐: 0.8 %北京: 8.3 %北京: 8.3 %十堰: 0.8 %十堰: 0.8 %台州: 2.3 %台州: 2.3 %大连: 3.8 %大连: 3.8 %天津: 3.0 %天津: 3.0 %广州: 1.5 %广州: 1.5 %张家口: 1.5 %张家口: 1.5 %成都: 3.8 %成都: 3.8 %扬州: 0.8 %扬州: 0.8 %杭州: 0.8 %杭州: 0.8 %沈阳: 0.8 %沈阳: 0.8 %深圳: 0.8 %深圳: 0.8 %漯河: 0.8 %漯河: 0.8 %焦作: 0.8 %焦作: 0.8 %福州: 1.5 %福州: 1.5 %绍兴: 4.5 %绍兴: 4.5 %芒廷维尤: 20.5 %芒廷维尤: 20.5 %芝加哥: 0.8 %芝加哥: 0.8 %茂名: 0.8 %茂名: 0.8 %西宁: 17.4 %西宁: 17.4 %西安: 0.8 %西安: 0.8 %重庆: 1.5 %重庆: 1.5 %其他CanadaChina上海丽水乌鲁木齐北京十堰台州大连天津广州张家口成都扬州杭州沈阳深圳漯河焦作福州绍兴芒廷维尤芝加哥茂名西宁西安重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (179) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return