CHEN Tao, JIN Chenhua, ZHANG Ke, DIAO Zhiwei, WU Chang, MENG Shaoping. Calculation of Effective Axial Stiffness of Cracked Reinforced Concrete Tension-Flexure Members Under Temperature Reduction[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 100-104,74. doi: 10.13204/j.gyjzG21120701
Citation:
CHEN Tao, JIN Chenhua, ZHANG Ke, DIAO Zhiwei, WU Chang, MENG Shaoping. Calculation of Effective Axial Stiffness of Cracked Reinforced Concrete Tension-Flexure Members Under Temperature Reduction[J]. INDUSTRIAL CONSTRUCTION , 2023, 53(6): 100-104,74. doi: 10.13204/j.gyjzG21120701
CHEN Tao, JIN Chenhua, ZHANG Ke, DIAO Zhiwei, WU Chang, MENG Shaoping. Calculation of Effective Axial Stiffness of Cracked Reinforced Concrete Tension-Flexure Members Under Temperature Reduction[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 100-104,74. doi: 10.13204/j.gyjzG21120701
Citation:
CHEN Tao, JIN Chenhua, ZHANG Ke, DIAO Zhiwei, WU Chang, MENG Shaoping. Calculation of Effective Axial Stiffness of Cracked Reinforced Concrete Tension-Flexure Members Under Temperature Reduction[J]. INDUSTRIAL CONSTRUCTION , 2023, 53(6): 100-104,74. doi: 10.13204/j.gyjzG21120701
Calculation of Effective Axial Stiffness of Cracked Reinforced Concrete Tension-Flexure Members Under Temperature Reduction
CHEN Tao 1,2
,
JIN Chenhua 3
,
ZHANG Ke 4
,
DIAO Zhiwei 5
,
WU Chang 1,2
,
,
,
MENG Shaoping 1,2
1. School of Civil Engineering, Southeast University, Nanjing 211189, China;
2. National Prestressing Engineering Technology Research Center, Nanjing 211189, China;
3. School of Architectural Engineering, Jinling Institute of Science and Technology, Nanjing 211169, China;
4. Jiangsu Xinzhu Tongchuang Civil Engineering Co., Ltd., Nanjing 211800, China;
5. Architectural Design and Research Institute Southeast University Co., Ltd., Nanjing 210096, China
Received Date: 2021-12-07
Available Online:
2023-08-18
Abstract
The effect of temperature on ultra-long concrete structures is very significant. Bending cracks may occur on the structure under service loads, while the tensile stress generated by temperature effect will further crack the structures, and thus the stiffness of the members will be reduced significantly. A simplified elastic analysis method was proposed in the paper, which considered the stiffness reduction of reinforced concrete tension-flexure members under temperature effect, and could obtain the effective axial stiffness of cracked tension-flexure members through simple iterations. The internal force of a single-span statically indeterminate beam under combined service load and temperature reduction was analyzed with the proposed method and finite element program ANSYS respectively to obtain the axial force versus temperature effect curve. The comparison between these two methods indicated that the calculated axial force by proposed method coincided well with finite element modeling results. The proposed simplified method could avoid complicated nonlinear analysis and had reasonable feasibility and accuracy.
References
[1]
中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社, 2010.
[2]
郭海浩.考虑温度收缩影响的地下超长预应力混凝土顶板裂缝控制研究[D]. 合肥: 合肥工业大学,2018.
[3]
尹建,乔高平,徐兆全.温度收缩效应下超长地下空间混凝土浇筑工序优化研究[J].建筑机械,2021(8):45-47.
[4]
潘玉珀,高善友,续宗广,等.地下室超长混凝土结构裂缝控制技术探讨[J].建筑科技,2020,4(2):37-39.
[5]
吴超.间接作用下超长混凝土结构无缝设计与施工关键技术研究[D]. 南京: 东南大学,2018.
[6]
李永魁. 超长结构温度预应力筋控制裂缝施工技术研究[J].山西建筑,2017,43(17):89-91.
[7]
杨维英. 某超长混凝土结构温度效应下裂缝控制[J].建材世界,2021,42(5):36-39.
[8]
张洋. 预应力控制地下室超长混凝土结构温度应力研究[D]. 成都: 西华大学,2021.
[9]
张韧. 基于温度作用效应的地下超长结构侧移及内力研究[D]. 合肥: 合肥工业大学, 2018.
[10]
杨园园.超长地下室温度裂缝的分析与处理[J].建筑技术开发,2019,46(9):18-20.
[11]
李翠. 探讨温度应力计算[J]. 建筑工程技术与设计, 2008(19): 902-903.
[12]
吴京,武俊燕,孟少平. 混凝土结构间接应力及其裂缝控制研究[J]. 工业建筑, 2006, 36(5): 13-15.
[13]
刁志纬. 超长混凝土结构在间接作用下的内力及裂缝控制研究[D]. 南京: 东南大学, 2012.
[14]
张克. 高层建筑周边地下室预应力混凝土顶盖设计相关问题的研究[D]. 南京: 东南大学, 2016.
Relative Articles
[1] ZHAO Rui, LIU Qing, WANG Haihua, MA Guojie. Selection Methods of Temperature Action Values and Most Disadvantageous Working Condition of Grid Structures [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 88-93. doi: 10.13204/j.gyjzG21081001
[2] LI Qiang, ZHOU Ting, CHEN Zhihua, LIU Haonan. INFLUENCE OF NON-LOAD ACTION ON SUPER HIGH RISE BUILDINGS CONCRETE-FILLED SQUARE STEEL TUBE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 150-159. doi: 10.13204/j.gyjzG19120105
[3] Li Qinshan, Wang Tiecheng, Zhao Hailong, Wang Wenxing. THE ANALYSIS AND COMPARISON OF MECHANICAL PERFORMANCE OF TWO KINDS OF SILO HORIZONTAL SUPPORTING STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 143-146. doi: 10.13204/j.gyjz201504027
[4] Lei Bing, Song Yupu. FATIGUE PERFORMANCE SIMULATION OF PARTIALLY PRESTRESSED CONCRETE BEAMS BASED ON ANSYS [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 71-76,143. doi: 10.13204/j.gyjz201309013
[5] Li Kaiwen. SCHEME COMPARISON AND SELECTION OF BONDING STEEL AND CFRP CONCRETE FRAME JOINT CONTINUED PROJECTS [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 147-153,163. doi: 10.13204/j.gyjz201203031
[6] Chen Chanhong, Huang Ying, Shan Jian. THE FINITE ELEMENT MODEL STUDY ON THE PRE- TWISTED EULER BEAM [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 94-97. doi: 10.13204/j.gyjz2011205017
[7] Chen Changhong, Huang Ying, Shan Jian. THE PRE- TWISTED THIN- WALLED BEAM ELEMENT STIFFNESS MATRIX CONSIDERING THE SAINT- VENANT WARPING DEFORMATION [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 60-64. doi: 10.13204/j.gyjz201204013
[8] Zhang Hongmei, Liu Wei. EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF CHANNEL-MASONRY COMPOSITE BEAMS FOR FAST RECONSTRUCTION OF LARGE SPACE [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 80-83. doi: 10.13204/j.gyjz201105018
[9] Li Ke, Chen Guoping, Tang Lan. ANALYSIS OF SEISMIC BEHAVIORS OF THE MASONRY-CONCRETE TUBE COMPOSITE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 34-37. doi: 10.13204/j.gyjz201104008
[10] Wang Quanfeng, Li Fei, Chen Haojun, Huang Yihui, Yang Yongxin, Xu Yuye. EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOUR OF TIMBER BEAMS REINFORCED WITH BFRP SHEETS [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 126-130. doi: 10.13204/j.gyjz201004027
[11] Xiao Qi, Zhu He. RANDOM VIBRATION ANALYSIS OF DYNAMIC CHARACTERISTICS OF TALL BUILDING STRUCTURE BASED ON POWER SPECTRAL DENSITY OF WIND PRESSURE METHOD [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 71-73. doi: 10.13204/j.gyjz200909014
[12] Huang Silin, Liang Xingwen, Yang Kejia. SIMULATION ANALYSIS ON BASIC BEHAVIOR OF HIGH?STRENGTH CONCRETE SHEAR WALL [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 38-41,71. doi: 10.13204/j.gyjz200703011
[13] Li Zhenyu, Chen Zhihua, Rong Bin, Liu Xiliang. RESEARCH ON CRISSCROSS COMBINED COLUMN OF CONCRETE-FILLED SQUARE TUBES [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 31-35,50. doi: 10.13204/j.gyjz200708009
[14] Zhang Jianrong, Liu Zhaoqiu, Hua Yijie. RESEARCH ON TEMPERATURE EFFECT COMBINATION IN THE DESIGN OF CONCRETE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(1): 42-46,11. doi: 10.13204/j.gyjz200701012
[15] Huang Yi, Wang Yuanqing, Chen Hong, Shi Yongjiu. ANALYSIS OF ASEISMIC PROPERTIES OF LIGHT-WEIGHT STEEL MULTI-STOREY STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(12): 73-75. doi: 10.13204/j.gyjz200612020
[16] Xie Xiao-dong, Yang Na, Yang Qing-shan. PARAMETER ANALYSIS OF STEEL REDUCED WEB CONNECTION [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 79-82,94. doi: 10.13204/j.gyjz200605021
[17] Geng Ou, Yuan Guanglin. TURY ON THE STRESS-STRAIN RELATIONSHIP OF CARBONATION CONCRETE AND THE FLEXURAL PERFORMANCE OF THE CARBONIZED REINFORCED CONCRETE BEAM [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 44-46. doi: 10.13204/j.gyjz2006010114
[18] Zheng Yong-qian, Yang You-fu, Han Lin-hai. ANALYSIS OF THE THERMAL FIELD OF STEEL-CONCRETE COMPOSITE COLUMNS USING ANSYS [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 74-77. doi: 10.13204/j.gyjz200608023
[19] Su Guozhu, Wang Yonghuan, Xu Haixiang, Xu Qing. STRUCTURAL OPTIMUM DESIGN OF ALLOTYPE HIGH TOWER [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 57-59,68. doi: 10.13204/j.gyjz200502016
[20] Li Zhilei, Gan Gang, Tang Jinchun. RESEARCH ON INTERNAL FORCE AND SPATIAL DEFORMATION OF AN OVERLONG FRAME STRUCTURE UNDER TEMPERATURE EFFECT [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 36-39. doi: 10.13204/j.gyjz200404011
Proportional views