Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Xin, Yang Shirong, Feng Yonggang. THE ON-SITE TEST OF PUMPING PRESSURE OF CONCRETE-FILLED STEEL TUBE PUMPING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 98-101. doi: 10.13204/j.gyjz200912024
Citation: YANG Ke, ZHANG Fan. Effect of Saturation on Fracture Toughness of Granite in Real-time Low Temperature Conditions[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 189-193. doi: 10.13204/j.gyjzG21112907

Effect of Saturation on Fracture Toughness of Granite in Real-time Low Temperature Conditions

doi: 10.13204/j.gyjzG21112907
  • Received Date: 2021-11-29
    Available Online: 2023-05-25
  • Publish Date: 2023-01-20
  • To study the fracture toughness of rocks at low temperature is of great significances for evaluating the stability of underground chamber storage structures for liquefied natural gas (LNG). The effects of real-time low temperatures (-60, -40, -20, 0 and 25 ℃) on the fracture toughness of granite mode I in dry and saturated state were researched by the semi-circular bending (SCB) method, and the microcracks of specimens were analyzed by scanning electron microscopy (SEM). The results showed that the fracture toughness of both dry and saturated granite increased with decrease of temperatures. Below 0 ℃, the fracture toughness of the saturated state was significantly greater than that in the dry state. The initial compaction stage of dry specimens decreased with decrease of temperatures, while the peak displacement was almost unchanged. Both the initial compaction stage and the peak displacements of saturated specimens increased with decrease of temperatures. At -60 ℃, the microcracks inside the granite increased significantly resulting in a slower growth of fracture toughness.
  • [1]
    周刚.地下储气库天然气液化法注气工艺原理探讨[J].石油工程建设,2021,47(1):1-3

    ,9.
    [2]
    徐彬,李宁,李仲奎,等.低温液化石油气和液化天然气储库及相关岩石力学研究进展[J].岩石力学与工程学报,2013,32(增刊2):2977-2993.
    [3]
    张杰坤,刘金韬.我国城市的大气污染与气体能源的地下储存[J].现代地质,1998(4):60-65.
    [4]
    李云鹏,王芝银.花岗岩低温热力效应参数及强度规律研究[J].岩土力学,2012,33(2):321-326.
    [5]
    徐光苗,刘泉声,彭万巍,等.低温作用下岩石基本力学性质试验研究[J].岩石力学与工程学报,2006,25(12):2502-2508.
    [6]
    KODAMA J, GOTO T, FUJII Y, et al. The effects of water content, temperature and loading rate on strength and failure process of frozen rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2013,62:1-13.
    [7]
    唐明明,王芝银,孙毅力,等.低温条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2010,29(4):787-794.
    [8]
    李玉成,陈有亮,孙浩程,等.寒区花岗岩冻融损伤破坏的试验研究[J].工业建筑,2019,49(7):83-88

    ,107.
    [9]
    INADA Y, YOKOTA K. Some studies of low temperature rock strength[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract,1984,21(3):145-153.
    [10]
    DWIVEDI R D, SONI A K, GOEL R K, et al. Fracture toughness of rocks under sub-zero temperature conditions[J]. International Journal of Rock Mechanics&Mining Sciences,2000(37):1267-1275.
    [11]
    贺晶晶,师俊平.冻融循环作用后花岗岩断裂性能的试验研究[J].西安理工大学学报,2018,34(2):192-198.
    [12]
    孙浩程,陈有亮,王苏然,等.含尖端相交裂隙岩石的破裂特征[J].工业建筑,2019,49(12):119-125

    ,137.
    [13]
    陈有亮,代明星,刘明亮,等.含初始损伤岩石的冻融损伤试验研究[J].力学季刊,2013,34(1):74-80.
    [14]
    KURUPPU M D, OBARA Y, AYTOLLAHI M R, et al. ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering,2014,47:267-274.
    [15]
    WONG L N Y, GUO T Y, LAM W K, et al. Experimental study of cracking characteristics of Kowloon granite based on three mode I fracture toughness methods[J]. Rock Mechanics and Rock Engineering,2019,52:4217-4235.
    [16]
    BACKERS T, STEPHANSSON O. ISRM suggested method for the determination of mode II fracture toughness[J]. Rock Mechanics and Rock Engineering,2012,45:1011-1022.
    [17]
    訾凡,杨更社,贾海梁.饱和度对泥质粉砂岩冻结力学性质的影响[J].冰川冻土,2018,40(4):748-755.
    [18]
    JIA H L, XIANG W, KRAUTBLATTER M. Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles[J]. Permafrost and Periglacial Processes,2015,26(4):368-377.
    [19]
    DAVIDSON G P, NYE J F. A photoelastic study of ice pressure in rock cracks[J]. Cold Regions Science and Technology,1985,11(2):141-153.
    [20]
    MATSUOKA N. Mechanisms of rock breakdown by frost action:an experimental approach[J]. Cold Regions Science and Technology,1990,17(3):253-270.
    [21]
    赵子江,刘大安,崔振东,等.半圆盘三点弯曲法测定页岩断裂韧度(KIC)的实验研究[J].岩石力学,2018,39(增刊1):258-266.
  • Relative Articles

    [1]HUANG Xigui, LUO Shengchang, LI Lixiao. Research on Wind Speed Profile Characteristics of Typhoon Boundary Layer Based on Measured Data[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 98-105. doi: 10.3724/j.gyjzG23121101
    [2]QIU Bin, LEI Honggang, SHEN Yu, JI Xuanzhe. Fatigue Load Spectrum Research of the Grid Structure Under Suspension Crane Loading[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 143-151. doi: 10.13204/j.gyjzG21102408
    [3]CHEN Zhengfa, ZHANG Jie, YAN Zhiguo, BIAN Minghui. STUDY OF WATER AND EARTH PRESSURE MODES ON SHIELD TUNNELS IN WATER-RICH DIORITE STRATA[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 25-30. doi: 10.13204/j.gyjzG21031806
    [4]MA Yunlong, WANG Xiuli, FENG Zhujun, GOU Baolong, HOU Hongjie. RESEARCH ON STRENGTHENING DESIGN FOR JACKING OF A LONG-SPAN STEEL PLANT[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 205-210. doi: 10.13204/j.gyjzG21061602
    [5]LI Zhaoyang, PAN Xinzhong, YU Bo. NONLINEAR ANALYSIS AND FIELD TEST VERIFICATION OF STEEL TUBULAR SCAFFOLDS UNDER CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 112-117. doi: 10.13204/j.gyjzG201904160007
    [6]Hu Changming, Liu Fengyun, Yang Jianhua, Zhao Yunbo, Ren Wenjun, Cai Suping. ON-SITE MEASUREMENT AND ANSYS ANALYSIS OF CANTILEVER[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 136-142. doi: 10.13204/j.gyjz201504026
    [7]Chen Xu. STUDY ON FIELD MEASUREMENT OF HIGH-FORMWORK WITH A HEIGHT OF 15 m[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 106-108. doi: 10.13204/j.gyjz201308023
    [8]Zheng Lianqiong, Cai Xuefeng, Zhuang Jinping, Zhou Jizhong, Tuo Mingbei. ON-SITE MEASUREMENT AND ANALYSIS OF SUPER HIGH OR LARGE-SPAN FORMWORK SUPPORT WITH FASTENER STEEL TUBE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 96-100. doi: 10.13204/j.gyjz201307022
    [9]Zhuang Jinping, Cai Xuefeng, Lin Zengzhong, Zhou Jizhong, Lin Huaqiang. SITE MEASUREMENT AND DISCUSSION ON MODIFYING METHOD OF BEARING CAPACITY FORMULA OF SUPER HIGH OR LARGE-SPAN FORM STRUT SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 94-99. doi: 10.13204/j.gyjz201109021
    [10]Zhang Weixi, Chen Ping, Zhao Dong, Li Lingtong. THE DESIGN OF THE INTEGRAL LIFT-UP FOR THE CONSERVATION OF THE JADE EMPEROR PAVILION OF KAIFENG YANQING TAOIST TEMPLE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 110-114. doi: 10.13204/j.gyjz200912027
    [11]Dai Beishan. ADJUSTMENT OF LARGE SLANTING STEEL COLUMN BY UPRISING METHOD[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 115-117. doi: 10.13204/j.gyjz200912028
    [12]Hu Wei-dong, Zhu Xin-nian, Xiao Si-xi, Chen Ji-guang. ESTABLISHMENT OF CURVE TO DETECT CONCRETE COMPRESSION STRENGTH WITH RESILIENCE METHOD FOR YUEYANG AREA[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 61-64. doi: 10.13204/j.gyjz200604018
    [13]Wang Yingge. FIELD TEST AND NUMERICAL ANALYSIS OF INTERACTION OF PILE- RAFT FOUNDATION ULTRA - HIGH TUBE-IN-TUBE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 10-15. doi: 10.13204/j.gyjz200505003
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 84.6 %META: 84.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %China: 3.8 %China: 3.8 %上海: 7.7 %上海: 7.7 %北京: 9.6 %北京: 9.6 %嘉兴: 1.9 %嘉兴: 1.9 %天津: 1.9 %天津: 1.9 %张家口: 5.8 %张家口: 5.8 %武汉: 1.9 %武汉: 1.9 %芒廷维尤: 28.8 %芒廷维尤: 28.8 %芝加哥: 1.9 %芝加哥: 1.9 %西宁: 21.2 %西宁: 21.2 %西安: 1.9 %西安: 1.9 %重庆: 1.9 %重庆: 1.9 %阳泉: 1.9 %阳泉: 1.9 %其他China上海北京嘉兴天津张家口武汉芒廷维尤芝加哥西宁西安重庆阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (126) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return