Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Feng, GUO Zhaosheng, AN Zengjun, LIU Jialong. Experimental Research on Mechanical Properties of PHC Pipe Pile Filled with Core Concrete Under Axial Tension[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 1-6,39. doi: 10.13204/j.gyjzG21111905
Citation: LI Feng, GUO Zhaosheng, AN Zengjun, LIU Jialong. Experimental Research on Mechanical Properties of PHC Pipe Pile Filled with Core Concrete Under Axial Tension[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 1-6,39. doi: 10.13204/j.gyjzG21111905

Experimental Research on Mechanical Properties of PHC Pipe Pile Filled with Core Concrete Under Axial Tension

doi: 10.13204/j.gyjzG21111905
  • Received Date: 2021-11-19
    Available Online: 2022-09-05
  • In order to popularize PHC uplift pipe pile in UHV transmission line pile foundation, the uplift bearing performance of the bonding surface between core concrete and the inner wall of pipe pile was investigated. The full-scale tests of 6 PHC 600 B 130 uplift piles were completed. In the test, different core filling lengths and interface treatment methods of the inner wall of the pipe pile were considered, the test results of axial tension, average bond strength of the interface, bond coefficients of the interface, and slip were obtained. The results showed that the maximum axial tensile force of each specimen increased linearly with the increase of core length. The average bond strength test value of the whole length of the core filled concrete interface was between 0.603 MPa and 0.774 MPa, and the core filling length and interface treatment method had little influence on the test results. Along the whole length of the pipe pile core filling, the bond strength and slip of the core filling concrete interface on each section were larger near the loading end while smaller away from the loading end. The core filling concrete near the loading end bears a larger proportion of axial tensile load. The design value of the average bond strength of the whole length of the core concrete interface could be taken as 0.30 MPa.
  • [1]
    中国建筑标准设计研究院. 预应力混凝土管桩图集:10SG409[S].北京:中国计划出版社,2010.
    [2]
    中华人民共和国住房和城乡建设部. 预应力混凝土管桩技术标准:JGJ/T 406-2017[S].北京:中国建筑工业出版社,2017.
    [3]
    建华建材(江苏)有限公司. 先张法预应力混凝土抗拔管桩(抱箍式连接):Q/321183 JH002-2020[S].南京:江苏凤凰科技技术出版社,2020.
    [4]
    天津市城乡建设和交通委员会. 预应力混凝土管桩技术规程:DB 29-110-2010[S].天津:天津市城乡建设和交通委员会,2010.
    [5]
    江苏省住房和城乡建设厅. 预应力混凝土管桩基础技术规程:DGJ/TJ 109-2010[S].南京:江苏省住房和城乡建设厅,2010.
    [6]
    福建省住房和城乡建设厅. 先张法预应力混凝土管桩基础技术规程:DBJ 13-2006[S].福州:福建省住房和城乡建设厅,2006.
    [7]
    汪加蔚.预应力混凝土管桩结构抗拉强度的试验研究[J].混凝土与水泥制品,2004(3):33-37.
    [8]
    张忠.预应力混凝土管桩填芯混凝土抗拔试验研究及理论分析[D].合肥:合肥工业大学,2006.
    [9]
    崔伟.PHC管桩填芯混凝土抗拔特性现场试验研究[J].安徽建筑,2017,24(5):414,444.
    [10]
    刘庆斌.管桩内孔填芯钢筋混凝土抗拔强度试件的研究[J].山西建筑,2010,36(27):86-88.
    [11]
    刘永超,郑刚,顾晓鲁.抗拔管桩及其填芯混凝土受拉结构性能试验[J].天津大学学报, 2012, 45(6):487-492.
    [12]
    中华人民共和国住房和城乡建设部. 建筑桩基检测技术规范:JGJ 106-2014[S].北京:中国建筑工业出版社,2014.
  • Relative Articles

    [1]MIN Xinzhe, TU Yongming. Experimental Research on the Fatigue Damage Characteristics of CFRP Plate-Concrete Bonding Interface[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 254-262. doi: 10.3724/j.gyjzG24091902
    [2]SU Zihan, GAO Huaguo, XU Shilin. Study on the Axial Tensile Properties of Reinforced Low-Grade Magnesium Ores Concrete-Filled Circular Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 146-155. doi: 10.3724/j.gyjzG22101602
    [3]BI Chaohao, LAI Huaming, ZHANG Gengbin, YAN Tianyou, HE Rui, XIAO Shuhua, LIU Run'an, ZHUO Kexian, CAI Peide, GUO Yongchang. Research on Interfacial Bonding Performance Between Geopolymer Concrete and GFRP Bars Based on Beam Test[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 46-53. doi: 10.3724/j.gyjzG23051401
    [4]WANG Lei, JIANG Mengyao, SHU Qianjin, ZHU Mingquan, MIAO Shenglong. Experimental Research on Interface Bonding Performance of Concrete-Filled Aluminum Tubular Columns at Room Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 147-152. doi: 10.3724/j.gyjzG24051001
    [5]LIU Huaqing, AN Zengjun, LIU Jialong, LI Yuanyuan, CAI Jianguo. Mechanical Properties Analysis of Core Reinforced Concrete-Filled Pile-Cap Joint Under Tensile-Bending Load[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 12-18. doi: 10.13204/j.gyjzG22011208
    [6]GUO Zhaosheng, HE Wubin, LIU Jialong, AN Zengjun. Experimental Research on Shear Capacity of PHC Pipe Pile Strengthened with CFRP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 7-11,54. doi: 10.13204/j.gyjzG21111710
    [7]LUO Peiyun, LEI Yongwang, ZHU Binrong, ZHAO Weiping. EXPERIMENTAL RESEARCH ON INTERFACE BOND PERFORMANCES BETWEEN LSAW STEEL PIPES AND CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 77-84. doi: 10.13204/j.gyjzG20052008
    [8]XIE Wangjun, CHEN Zongping, ZHOU Ji. EXPERIMENTAL STUDY ON BONDING PROPERTIES OF CONCRETE FILLED SQUARE STEEL TUBES AFTER FIRE SPRINKLER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 135-143,134. doi: 10.13204/j.gyjzG19122306
    [16]Chen Zongping, Xu Jinjun, Huang Kaiwang, Su Yisheng. TEST STUDY ON BOND PROPERTIES BETWEEN HIGH STRENGTH STEEL BAR AND RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 16-20. doi: 10.13204/j.gyjz201311004
    [17]Xu Kaicheng, Chen Mengcheng, He Xiaoping. EXPERIMENTAL ANALYSIS OF CFST INTERFACE BONDING PROPERTY BY CORROSION OF CHLORINE ION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 71-74,98. doi: 10.13204/j.gyjz201301016
    [18]Zheng Nianping. APPLICATION OF PHC PILE IN BACKFILLED STONE LAYER[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 117-119,110. doi: 10.13204/j.gyjz200703029
    [19]Liu Bingkang, Li Jianhong, Zhang Xingyu, Sheng Hai. TEST OF MOMENT BEARING CAPACITY AND DUCTILITY PERFORMANCE OF FILLED PRESTRESSED CONCRETE PIPE PILE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 46-49,4. doi: 10.13204/j.gyjz200703013
    [20]Liu Yong-jian, Chi Jian-jun. PUSH-OUT TEST ON SHEAR BOND STRENGTH OF CFST[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 78-80. doi: 10.13204/j.gyjz200604024
  • Cited by

    Periodical cited type(3)

    1. 高山珺,鲍金虎,吴锋. 全装配式高桩码头关键节点连接试验与应用. 水运工程. 2025(04): 81-87 .
    2. 郭昭胜,许春博,刘亚升,贺武斌. PHC管桩抱箍式接头轴拔试验与精细化分析. 华中科技大学学报(自然科学版). 2024(09): 133-140 .
    3. 程飞. 基于预应力钢筒混凝土管工程施工方法. 内蒙古水利. 2023(08): 38-40 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 84.1 %META: 84.1 %PDF: 7.0 %PDF: 7.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.6 %其他: 7.6 %上海: 4.3 %上海: 4.3 %东莞: 0.2 %东莞: 0.2 %临汾: 0.2 %临汾: 0.2 %临沂: 0.7 %临沂: 0.7 %丽水: 0.4 %丽水: 0.4 %乐山: 0.2 %乐山: 0.2 %保定: 0.4 %保定: 0.4 %兰州: 0.2 %兰州: 0.2 %包头: 0.2 %包头: 0.2 %北京: 7.0 %北京: 7.0 %南京: 4.9 %南京: 4.9 %南宁: 0.7 %南宁: 0.7 %南平: 0.2 %南平: 0.2 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %厦门: 1.8 %厦门: 1.8 %和田: 0.2 %和田: 0.2 %咸阳: 0.4 %咸阳: 0.4 %天津: 2.5 %天津: 2.5 %太原: 0.4 %太原: 0.4 %威海: 0.7 %威海: 0.7 %宁波: 0.9 %宁波: 0.9 %安康: 0.4 %安康: 0.4 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %岳阳: 0.2 %岳阳: 0.2 %常州: 0.7 %常州: 0.7 %常德: 0.4 %常德: 0.4 %平顶山: 0.2 %平顶山: 0.2 %广州: 2.0 %广州: 2.0 %廊坊: 0.2 %廊坊: 0.2 %开封: 0.2 %开封: 0.2 %张家口: 1.6 %张家口: 1.6 %张家界: 0.2 %张家界: 0.2 %徐州: 0.2 %徐州: 0.2 %惠州: 0.2 %惠州: 0.2 %成都: 2.0 %成都: 2.0 %昆明: 2.5 %昆明: 2.5 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.1 %杭州: 1.1 %武威: 0.2 %武威: 0.2 %武汉: 2.0 %武汉: 2.0 %沈阳: 2.2 %沈阳: 2.2 %沧州: 0.9 %沧州: 0.9 %洛杉矶: 0.7 %洛杉矶: 0.7 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.4 %济南: 0.4 %济宁: 0.2 %济宁: 0.2 %海口: 0.4 %海口: 0.4 %深圳: 0.7 %深圳: 0.7 %温州: 0.2 %温州: 0.2 %漯河: 1.3 %漯河: 1.3 %石家庄: 1.3 %石家庄: 1.3 %福州: 1.1 %福州: 1.1 %秦皇岛: 0.7 %秦皇岛: 0.7 %绍兴: 0.4 %绍兴: 0.4 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 3.1 %芒廷维尤: 3.1 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.9 %苏州: 0.9 %菏泽: 0.2 %菏泽: 0.2 %蚌埠: 1.6 %蚌埠: 1.6 %襄阳: 0.9 %襄阳: 0.9 %西宁: 13.2 %西宁: 13.2 %西安: 4.9 %西安: 4.9 %贵阳: 1.3 %贵阳: 1.3 %达州: 0.4 %达州: 0.4 %运城: 2.0 %运城: 2.0 %通辽: 0.2 %通辽: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.8 %郑州: 1.8 %鄂州: 0.2 %鄂州: 0.2 %重庆: 1.3 %重庆: 1.3 %银川: 0.2 %银川: 0.2 %镇江: 0.9 %镇江: 0.9 %长春: 0.4 %长春: 0.4 %长沙: 2.5 %长沙: 2.5 %长治: 0.2 %长治: 0.2 %青岛: 0.4 %青岛: 0.4 %其他上海东莞临汾临沂丽水乐山保定兰州包头北京南京南宁南平南昌南通厦门和田咸阳天津太原威海宁波安康宜昌宣城岳阳常州常德平顶山广州廊坊开封张家口张家界徐州惠州成都昆明晋城朝阳杭州武威武汉沈阳沧州洛杉矶洛阳济南济宁海口深圳温州漯河石家庄福州秦皇岛绍兴绵阳芒廷维尤芝加哥苏州菏泽蚌埠襄阳西宁西安贵阳达州运城通辽邯郸郑州鄂州重庆银川镇江长春长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (374) PDF downloads(31) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return