Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WU Lele, TANG Caoming, LUO Kaihai, CHENG Shaoge, HUANG Shimin. Comparisons of Design and Assessment Standards of Masonry Structures in China, the US and Europe[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 191-198. doi: 10.13204/j.gyjzG21092702
Citation: WU Lele, TANG Caoming, LUO Kaihai, CHENG Shaoge, HUANG Shimin. Comparisons of Design and Assessment Standards of Masonry Structures in China, the US and Europe[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 191-198. doi: 10.13204/j.gyjzG21092702

Comparisons of Design and Assessment Standards of Masonry Structures in China, the US and Europe

doi: 10.13204/j.gyjzG21092702
  • Received Date: 2021-09-27
    Available Online: 2022-09-05
  • The design and assessment standards of masonry structures in China, the US and Europe were briefly compared. The results showed that the US standard did not reduce the strength, and the European standard defined the adjustment method of partial coefficients. In the seismic assessment, the US and European standards adopted performance-based assessment methods, considering the influence of cognitive level, the representative values of gravity load and the calculation method of seismic bearing capacity were adjusted. The ultimate limit state function of bearing capacity in Chinese assessment and design standards were the same, which was conservative for the safety assessment of existing building structures. It was suggested to introduce the performance-based methods in the future revision of the Chinese assessment standards and modify the partial factors of the ultimate expression of bearing capacity according to the reliability theory.
  • [1]
    ELLINGWOOD B R, RELIAELLINGWOOD B R. Reliability-based condition assessment assessment and LRFD for existing structures[J]. Structural Safety, 1996, 18(2/3):67-80.
    [2]
    ASP O, LAAKSONEN A. Background of target reliability levels for existing structures[J]. Safety, IABSE Symposium Report,2013, 100(5):252-259.
    [3]
    STEENBERGEN R D J M, SýKORA M, DIAMANTIDIS D, et al. Economic and human safety reliability levels for existing structures[J]. Structural Concrete,2015,16(3):323-332.
    [4]
    顾祥林,许勇,张伟平.既有建筑结构构件的安全性分析[J].建筑结构学报,2004,25(6):117-122.
    [5]
    黄炎生,邓浩,罗仁志.基于分项系数法的既有框架结构可靠性评估[J].华南理工大学学报,2008,36(12):34-37.
    [6]
    李英民,周小龙,罗文文,等.基于可靠性理论的既有结构楼面活荷载取值研究[J].建筑结构,2014,44(17):83-94.
    [7]
    The Masonry Standards Joint Committee. Building code requirements and specification for masonry structures:ACI 530[S]. USA:Amer Society of Civil Engineers, 2008.
    [8]
    American Society of Civil Engineers. Minimum Design loads and associated criteria for buildings and other structures:ASCE 7-16[S]. USA:American Society of Civil Engineers, 2016.
    [9]
    American Concrete Institute. Building code requirements for structural concrete:ACI 318-19[S]. USA:American Concrete Institute, 2019.
    [10]
    American Society of Civil Engineers. Seismic evaluation and retrofit of existing building:ASCE 41-17[S]. USA:American Society of Civil Engineers, 2017.
    [11]
    International Code Council. International existing building code:IEBC[S]. USA:International Code Council. International, INC, 2017.
    [12]
    The Standards Policy and Strategy Committee. Eurocode 6-Design of masonry structures-Part 1-1:general rules for reinforced and unreinforced masonry structures:BS EN 1996-1-1:2005[S]. UK:British Standards Institution, 2005.
    [13]
    The Standards Policy and Strategy Committee. Basis of structural design:BS EN 1990:2002[S]. UK:British Standards Institution, 2002.
    [14]
    The Standards Policy and Strategy Committee. General rules, seismic action and rules for buildings:BS EN 1998-1:2004[S]. UK:British Standards Institution, 2004.
    [15]
    International Organization for Standardization. Bases for design of structures-assessment of existing structures:ISO 13822[S]. Switzerland:International Organization for Standardization, 2010.
    [16]
    Nederlands Norm. Assessment of existing structures in case of reconstruction and disapproval:Basic Rules:NEN 8700[S]. Nederland:NEN, 2011.
    [17]
    The Standards Policy and Strategy Committee. Eurocode 8-design of structures for earthquake resistance-part 3:assessment and retrofitting of buildings:BS EN1998-3:2005[S]. UK:British Standards Institution, 2005.
    [18]
    中华人民共和国住房和城乡建设部. 砌体结构设计规范:GB 50003-2011[S]. 北京:中国建筑工业出版社, 2011.
    [19]
    中华人民共和国住房和城乡建设部. 建筑结构可靠性设计统一标准:GB 50068-2018[S]. 北京:中国建筑工业出版社, 2018.
    [20]
    中华人民共和国住房和城乡建设部. 建筑抗震鉴定标准:GB 50023-2009[S]. 北京:中国建筑工业出版社, 2011.
    [21]
    中华人民共和国住房和城乡建设部.民用建筑可靠性鉴定标准:GB 50292-2015[S]. 北京:中国建筑工业出版社, 2015.
    [22]
    中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社, 2012.
    [23]
    上海市建设和交通委员会. 既有建筑物结构检测与评定标准:DG/TJ08-804-2005[S]. 上海:同济大学出版社, 2005.
  • Relative Articles

    [1]LI Yunfu, ZHANG Hongwei, MA Bo, WU Yanqi, LI Shengli. Characteristic Analysis of AE Signal Parameters of Masonry Structures in Axial Compression and In-Situ Axial Compression Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 8-11,63. doi: 10.13204/j.gyjzG20111210
    [2]Qi Yongsheng Gu Qiang Zhao Fenghua, . RESEARCH ON SEISMIC COLLAPSE MARGIN RATIO OF V-SHAPE CBSF CONSIDERING STRUCTURAL INFLUENCING COEFFICIENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 145-149. doi: 10.13204/j.gyjz201506028
    [3]Xin Ren, Guo Xiaohua, Li Binbin, Wang Ling, Chen Xuan. EXPERIMENTAL STUDY ON UNIAXIAL MECHANICAL PROPERTIES OF PERFORATED BRICK MASONRY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 62-64. doi: 10.13204/j.gyjz201502014
    [4]Zheng Shansuo, Ma Delong, Shang Xiaoyu. STUDY OF NONLINEAR ANALYSIS METHOD FOR MASONRY BASED OPENSEES[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 68-73. doi: 10.13204/j.gyjz2001412012
    [5]Tian Penggang, Zhang Fengliang. SAFETY APPRAISAL AND STRUCTURE STRENGTHEN AFTER FIRE FOR SHOPPING CENTER OF ARTS AND CULTURE OF YANCHUAN COUNTY[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 155-160. doi: 10.13204/j.gyjz201402033
    [6]Gong Jinxin, Wang Huan. ECONOMIC DEVELOPMENT AND SAFETY OF BUILDING STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 110-114. doi: 10.13204/j.gyjz201307025
    [7]Yang Yang, Lu Kunlin, Zhu Dayong, Wu Ping. THE UPPER-BOUND SOLUTION FOR BEARING CAPACITY FACTOR OF BY EMPLOYING THE EQUIVALENCE OF LIMIT ANALYSIS AND LIMIT EQUILIBRIUM METHOD[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 72-77,71. doi: 10.13204/j.gyjz201302015
    [8]Wang Xueyan, Hu Changming, Mei Yuan, Liu Caihong. SECURITY ANALYSIS AND STRENGTHENING OF CONCRETE STRUCTURE WITH THROUGH DEFECT IN FRAME COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 150-153,169. doi: 10.13204/j.gyjz201308031
    [9]Yang Haobo, Qian Deling, Peng Xiaobing, Cheng Hong, Xie Yijun. DYNAMIC BEHAVIOR RESEARCH OF UNREINFORCED AND REINFORCED ANCIENT ARCHITECTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 131-135. doi: 10.13204/j.gyjz201311029
    [10]Su Qiwang, Liu Chengqing, Zhao Shichun. THE ESTIMATE RESEARCH ON SEISMIC DAMAGE DEGREE OF MASONRY BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 39-44. doi: 10.13204/j.gyjz201302008
    [11]Pan Zhihong, Li Aiqun, Yang Jianping. EXPERIMENT AND NONLINEAR STATIC ANALYSIS OF BRICK MASONRY WALL STRENGTHENED WITH STRAND MESH REINFORCING POLYMER MORTAR OVERLAY[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 146-150,160. doi: 10.13204/j.gyjz2011205028
    [12]Wei Gang, Chen Chunlai. NUMERICAL SIMULATION OF THE EFFECT OF DOUBLE-O-TUBE SHIELD TUNNEL CONSTRUCTION ON ADJACENT MASONRY BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 117-122,127. doi: 10.13204/j.gyjz201201022
    [13]Feng Yunfen, Gong Jinxin. RELIABILITY INDEX-BASED DESIGN FOR BUILDING STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 1-8. doi: 10.13204/j.gyjz201107001
    [14]Ren Xiaosong, Wang Song. PRACTICAL METHOD FOR ASEISMIC RELIABILITY ANALYSIS OF EXISTING MASONRY STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 19-22. doi: 10.13204/j.gyjz200807005
    [15]Li Qinghong, Dong Jie, Ma Yujie, Wang Huaying. PREVENTING AND TREATING MEASURES FOR TEMPERATURE CRACKS BLOCKWORK[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 106-108. doi: 10.13204/j.gyjz200808028
    [16]Chen Huaming, Liu Weiqing, Sun Xuemei. SHOCK ISOLATION DESIGN OF FOUNDATION FOR A BRICK MASONRY RESIDENCE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 94-96. doi: 10.13204/j.gyjz200411026
  • Cited by

    Periodical cited type(1)

    1. 吴乐乐,唐曹明,黄世敏,周洲,程绍革,罗瑞. 钢筋网水泥砂浆面层加固低强度砖砌体结构的地震易损性分析. 建筑科学. 2023(05): 54-65 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.5 %FULLTEXT: 16.5 %META: 81.6 %META: 81.6 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.0 %其他: 12.0 %上海: 1.9 %上海: 1.9 %临沂: 0.6 %临沂: 0.6 %保定: 0.6 %保定: 0.6 %克拉玛依: 0.6 %克拉玛依: 0.6 %北京: 6.3 %北京: 6.3 %嘉兴: 1.9 %嘉兴: 1.9 %天津: 1.3 %天津: 1.3 %常德: 1.9 %常德: 1.9 %张家口: 4.4 %张家口: 4.4 %扬州: 0.6 %扬州: 0.6 %昆明: 1.9 %昆明: 1.9 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.3 %杭州: 1.3 %武汉: 0.6 %武汉: 0.6 %漯河: 1.9 %漯河: 1.9 %芒廷维尤: 12.0 %芒廷维尤: 12.0 %芝加哥: 2.5 %芝加哥: 2.5 %苏州: 0.6 %苏州: 0.6 %衡阳: 0.6 %衡阳: 0.6 %西宁: 33.5 %西宁: 33.5 %西安: 1.3 %西安: 1.3 %贵阳: 0.6 %贵阳: 0.6 %运城: 5.1 %运城: 5.1 %邯郸: 0.6 %邯郸: 0.6 %郑州: 1.9 %郑州: 1.9 %重庆: 1.3 %重庆: 1.3 %长治: 0.6 %长治: 0.6 %其他上海临沂保定克拉玛依北京嘉兴天津常德张家口扬州昆明晋城朝阳杭州武汉漯河芒廷维尤芝加哥苏州衡阳西宁西安贵阳运城邯郸郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (128) PDF downloads(3) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return