Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Li Yuqi, Xie Kanghe. PREDICTION AND ANALYSIS OF DEFORMATION OF DEEP EXCAVATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 19-21,80. doi: 10.13204/j.gyjz200409006
Citation: WU Jianqi, OUYANG Cailu, FU Hongtao, XU Shiwei, LYU Youchang. Comparisons of Model Tests Between Vacuum Preloading on Twice Setting of Prefabricated Vertical Drains and Two-Stage Zonal Vacuum Preloading on Prefabricated Vertical Drains[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 207-211,222. doi: 10.13204/j.gyjzG21090606

Comparisons of Model Tests Between Vacuum Preloading on Twice Setting of Prefabricated Vertical Drains and Two-Stage Zonal Vacuum Preloading on Prefabricated Vertical Drains

doi: 10.13204/j.gyjzG21090606
  • Received Date: 2021-09-06
    Available Online: 2023-05-25
  • Publish Date: 2023-01-20
  • In order to solve the problem that prefabricated vertical drains (PVDs) are prone to be silted and lead to poor soil reinforcement effect and non-uniform consolidation in the process of treating soft soil by vacuum preloading with prefabricated vertical drains, a comparative model test between vacuum preloading on twice setting of prefabricated vertical drains and two-stage zonal vacuum preloading on prefabricated vertical drains was conducted. By comparing the indexes of site soil involving subsidence, cross-plate vane shear strength and the water content treated by the above two methods, the improvement effect of the two methods was explored. The test results showed that the maximum subsidence of vacuum preloading on twice setting of prefabricated vertical drains and two-stage zonal vacuum preloading on prefabricated vertical drains was 208 mm and 170 mm respectively; the average cross-plate vane shear strength of soil improved by the two methods were 29.5 kPa and 24.75 kPa respectively. It showed that the improvement effect of vacuum preloading by twice setting of prefabricated vertical drains on ultrasoft soil was better than that by two-stage zonal vacuum preloading on prefabricated vertical drains.
  • [1]
    鲍树峰,娄炎,董志良,等.新近吹填淤泥地基真空固结失效原因分析及对策[J].岩土工程学报, 2014, 36(7):1350-1359.
    [2]
    CAI Y Q, QIAO H H, WANG J, et al. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading[J]. Engineering Geology, 2017, 222:10-19.
    [3]
    蔡袁强.吹填淤泥真空预压固结机理与排水体防淤堵处理技术[J].岩土工程学报,2021,43(2):201-225.
    [4]
    陈雷,张富海,李治朋,等.排水板周围土体径向固结室内模型试验研究[J].岩土工程学报,2016,38(增刊1):163-168.
    [5]
    KJELLMAN W. Consolidation of clay soil by means of atmospheric pressure[C]//Proc. Conf. on Soil Stabilization. 1952:258-263.
    [6]
    朱群峰,高长胜,占鑫杰,等.考虑板土相互作用的排水板通水特性试验研究[J].岩土工程学报,2017,39(12):2158-2164.
    [7]
    王军,蔡袁强,符洪涛,等.新型防淤堵真空预压法室内与现场试验研究[J].岩石力学与工程学报,2014,33(6):1257-1268.
    [8]
    雷华阳,李宸元,刘景锦,等.交替式真空预压法加固吹填超软土试验及数值模拟研究[J].岩石力学与工程学报,2019,38(10):2112-2125.
    [9]
    史吏,胡东东,蔡袁强,等.增压式真空预压吹填淤泥孔压实时响应及加固机制初探[J].岩土力学,2020,41(1):185-193.
    [10]
    武亚军,牛坤,唐海峰,等.药剂真空预压法处理工程废浆中生石灰的增渗作用[J].岩土力学,2017,38(12):3453-3461.
    [11]
    武亚军,陆逸天,牛坤,等.药剂真空预压法处理工程废浆试验[J].岩土工程学报,2016,38(8):1365-1373.
    [12]
    武亚军,杨建波,张孟喜,等.真空加载方式对吹填流泥加固效果及土颗粒移动的影响研究[J].岩土力学,2013,34(8):2129.
    [13]
    赵森,曾芳金,王军,等.絮凝-真空预压加固吹填淤泥试验研究[J].岩石力学与工程学报,2016,35(6):1291-1296.
    [14]
    LIN W A, ZHAN X, ZHAN T L, et al. Effect of FeCl3-conditioning on consolidation property of sewage sludge and vacuum preloading test with integrated PVDs at the Changan landfill, China[J]. Geotextiles and Geomembranes, 2014, 42:181-190.
    [15]
    孙立强,闫澍旺,李伟,等.超软土真空预压室内模型试验研究[J].岩土力学,2011,32(4):984-990.
    [16]
    WANG J, CAI Y Q, FU H T, et al. Experimental study on a dredged fill ground improved by a two-stage vacuum preloading method[J]. Soils and Foundations, 2018,58(3):765-775.
    [17]
    HANSBO S. Consolidation of fine-grained soils by prefabricated drains[C]//Proc. of the 10th ICSMFE. 1980:677-682.
    [18]
    高志义,梁爱华,刘天韵,等.真空预压中真空度和孔隙水压力测试与分析[J].中国港湾建设, 2014(2):1-6.
  • Relative Articles

    [3]Zhang Wenxue, Li Zengyin, Liu Long. COMPARISON AND ANALYSIS ON LATERAL PRESSURE OF CONCRETE FORMWORK FROM DIFFERENT FORMULAS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 132-136.
    [4]Hu Changming, Zhao Yunbo, Wang Jie, Liu Fengyun. FINITE ELEMENT ANALYSIS OF COOPERATIVE EFFECTS OF FORMWORK-SUPPORTING SYSTEM AND CONCRETE FLOORS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 115-121.
    [5]Zheng Lianqiong, Cai Xuefeng, Zhuang Jinping, Zhou Jizhong, Tuo Mingbei. ON-SITE MEASUREMENT AND ANALYSIS OF SUPER HIGH OR LARGE-SPAN FORMWORK SUPPORT WITH FASTENER STEEL TUBE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 96-100. doi: 10.13204/j.gyjz201307022
    [6]Lin Zhangzhang, Zhang Yi, Yang Junjie. ANALYSIS OF MULTI-STORY FORMWORK SUPPORTING SYSTEM BY DETECTION AND FEM[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 94-98. doi: 10.13204/j.gyjz201302019
    [7]Bai Xue, Ma Haibin, Yao Chuanqin, Bai Rong. DESIGN AND MODAL ANALYSIS OF JACKING FORM SYSTEM FOR SUPER HIGH-RISE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 14-17,51. doi: 10.13204/j.gyjz201305003
    [8]Zhang Xuezhi, Zhang Xuefeng, Ying Yimiao, Wang Senjun. ACTUAL MEASUREMENT AND ANALYSIS OF HIGH FORM STRUT OF FASTENER-STYLE STEEL PIPE SCAFFOLD SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 15-18. doi: 10.13204/j.gyjz201101004
    [9]Mei Yuan, Hu Changming, Zhou Zhengyong, Jiang Ming, Wang Xia. STATISTICAL ANALYSIS OF LOADS OF SUPPORTING STRUCTURE FOR TALL AND LARGE FALSEWORK DURING CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 42-46. doi: 10.13204/j.gyjz201002010
    [10]Hu Changming, Mei Yuan, Dong Pan, Zhang Xiaoyong. ANALYSIS AND STUDY ON THE BEARING CAPACITY REDUCTION FACTOR OF COUPLER TALL FALSEWORK[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 12-16. doi: 10.13204/j.gyjz201002003
    [11]Chen Zhihua, Han Juan, . STUDY ON ARCHITECTURAL CONCRETE AND ITS APPLICATION IN TIANJIN MUSEUM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 72-75. doi: 10.13204/j.gyjz200504021
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0305101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.2 %FULLTEXT: 12.2 %META: 84.6 %META: 84.6 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %其他: 12.3 %其他: 12.3 %北京: 7.0 %北京: 7.0 %台州: 1.8 %台州: 1.8 %张家口: 3.5 %张家口: 3.5 %扬州: 1.8 %扬州: 1.8 %杭州: 1.8 %杭州: 1.8 %湖州: 5.3 %湖州: 5.3 %芒廷维尤: 24.6 %芒廷维尤: 24.6 %衢州: 1.8 %衢州: 1.8 %西宁: 29.8 %西宁: 29.8 %重庆: 1.8 %重庆: 1.8 %长春: 1.8 %长春: 1.8 %其他其他北京台州张家口扬州杭州湖州芒廷维尤衢州西宁重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (116) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return