Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Chunhua, HE Sheng, XIONG Anping. Eigenvalue Imperfection Modal Method for Controlling Vertical Geometric Imperfections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 175-179. doi: 10.13204/j.gyjzG21083004
Citation: LI Chunhua, HE Sheng, XIONG Anping. Eigenvalue Imperfection Modal Method for Controlling Vertical Geometric Imperfections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 175-179. doi: 10.13204/j.gyjzG21083004

Eigenvalue Imperfection Modal Method for Controlling Vertical Geometric Imperfections

doi: 10.13204/j.gyjzG21083004
  • Received Date: 2021-08-30
  • In order to accurately and quickly analyze the stability bearing capacity of single-layer reticulated shells with initial geometric defects, through analyzing the initial geometric imperfection values of eigenvalue imperfection modal method (EIM) and random imperfection modal method (RIMM), and conducting the linear buckling analysis of K8 Kaiweite single-layer reticulated shell structure with 1/4, 1/5, 1/6, 1/7 rise-span ratio, it was found that the vertical geometry imperfection value of the EIM was smaller than that of the RIMM, and it would be more obvious when the rise-span ratio was relatively large. Furthermore, the reason for the low reliability of the EIM when the rise-span was relatively large was analyzed, and the eigenvalue imperfection modal method for controlling vertical geometric imperfections (EIM-CVGI) was proposed. Using the proposed method and the N-order eigenvalue imperfection modal method, the elastoplastic load-displacement whole process analysis of the above four kinds of rise-span ratio reticulated shell structures was carried out. The results showed that the errors of the calculation results of the EIM-CVGI and the N-order eigenvalue defect modal method were within 5% of the engineering allowable. Compared with EIM, the stability performance of the reticulated shell structure could be evaluated more safely.
  • [1]
    吴剑国,张其林.网壳结构稳定性的研究进展[J].空间结构, 2002(1):10-18.
    [2]
    中华人民共和国住房和城乡建设部.空间网格结构技术规程:JGJ 7-2010[S].北京:中国建筑工业出版社, 2010.
    [3]
    KANI I M, MCCONNEL R E, SEE T. The analysis and testing of a single-layer, shallow braced dome[C]//3rd International Conference on Space Structures. Netherlands:Elsevier Applied Science Publishers, Ltd, 1984:613-618.
    [4]
    SEE T, MCCONNEL R E. Large displacement elastic buckling of space structures[J]. Journal of Structural Engineering, 1986, 112(5):1052-1069.
    [5]
    BORRI C, SPINELLI P. Buckling and post-buckling behaviour of single layer reticulated shells affected by random imperfections[J]. Computers&Structures, 1988, 30(4):937-943.
    [6]
    陈昕,沈世钊.单层穹顶网壳的荷载-位移全过程及缺陷分析[J].建筑结构学报, 1992(3):11-18.
    [7]
    蔡健,贺盛,姜正荣,等.单层网壳结构稳定性分析方法研究[J].工程力学, 2015, 32(7):103-110.
    [8]
    魏德敏,涂家明.单层网壳结构非线性稳定的随机缺陷模态法研究[J].华南理工大学学报(自然科学版), 2016, 44(7):83-89.
    [9]
    唐敢,尹凌峰,马军,等.单层网壳结构稳定性分析的改进随机缺陷法[J].空间结构, 2004(4):44-47,35.
    [10]
    罗昱.改进的一致缺陷模态法在单层网壳稳定分析中的应用研究[D].天津:天津大学, 2007.
    [11]
    曹正罡,范峰,沈世钊.单层球面网壳的弹塑性稳定性[J].土木工程学报, 2006(10):6-10.
    [12]
    BRUNO L, SASSONE M, VENUTI F. Effects of the equivalent geometric nodal imperfections on the stability of single layer grid shells[J]. Engineering Structures, 2016, 112:184-199.
    [13]
    CUI X Z, LI Y G, HONG H P. Reliability of stability of single-layer latticed shells with spatially correlated initial geometric imperfection modeled using conditional autoregressive model[J/OL]. Engineering Structures, 2019, 201[2019-11-15].https://doi.org/10.1016/j.engstruct.2019.109787.
    [14]
    孙一喆,惠宽堂.单层网壳各向初始缺陷敏感性分析[J].建筑科学, 2020, 36(5):33-38.
    [15]
    刘俊,罗永峰,张玉建.凯威特单层球面网壳的几何缺陷相关性[J].天津大学学报(自然科学与工程技术版), 2020, 53(5):535-541.
    [16]
    蔡健,贺盛,姜正荣,等.单层网壳结构稳定分析中初始几何缺陷最大值的研究[J].建筑结构学报, 2015, 36(6):86-92.
  • Cited by

    Periodical cited type(1)

    1. 张涛,蔡一栋,李洋. 单层网壳稳定性分析. 中国建筑金属结构. 2024(01): 78-81 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.9 %FULLTEXT: 10.9 %META: 89.1 %META: 89.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 28.2 %其他: 28.2 %Central District: 0.9 %Central District: 0.9 %东莞: 1.8 %东莞: 1.8 %哈尔滨: 0.9 %哈尔滨: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %天津: 1.8 %天津: 1.8 %宣城: 0.9 %宣城: 0.9 %常德: 1.8 %常德: 1.8 %张家口: 5.5 %张家口: 5.5 %成都: 0.9 %成都: 0.9 %扬州: 0.9 %扬州: 0.9 %晋城: 0.9 %晋城: 0.9 %杭州: 0.9 %杭州: 0.9 %温州: 0.9 %温州: 0.9 %漯河: 1.8 %漯河: 1.8 %芒廷维尤: 20.9 %芒廷维尤: 20.9 %西宁: 20.0 %西宁: 20.0 %西安: 1.8 %西安: 1.8 %运城: 4.5 %运城: 4.5 %郑州: 0.9 %郑州: 0.9 %重庆: 2.7 %重庆: 2.7 %其他Central District东莞哈尔滨嘉兴天津宣城常德张家口成都扬州晋城杭州温州漯河芒廷维尤西宁西安运城郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads(0) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return