Citation: | LIN Songwei, OU Tong, LUO Jiexin, HE Hui, LIU Yanhui. Vibration Reduction Analysis of Landscape Towers with Variable Damping TMDs Based on Wind Tunnel Tests[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 138-143,121. doi: 10.13204/j.gyjzG21073103 |
[1] |
周福霖. 工程结构减震控制[M]. 北京:地震出版社,1997.
|
[2] |
周云. 结构风振控制的设计方法与应用[M]. 北京:科学出版社,2009.
|
[3] |
刘彦辉,谭平,周福霖,等. 广州电视塔直线电机驱动的主动质量阻尼器动力特性研究[J]. 建筑结构学报,2015,36(4):126-132.
|
[4] |
谭平,张颖,刘彦辉,等. 广州新电视塔混合控制技术研究[J]. 土木建筑与环境工程,2010,32(增刊2):427-431.
|
[5] |
黄襄云,周福霖,金建敏,等. 广州新电视塔结构模型振动台试验研究[J]. 土木工程学报,2010,43(8):21-29.
|
[6] |
徐怀兵, 欧进萍. 设置混合调谐质量阻尼器的高层建筑风振控制实用设计方法[J]. 建筑结构学报,2017,38(6):144-154.
|
[7] |
陈政清,华旭刚,牛华伟,等. 永磁电涡流阻尼新技术及其在土木工程中的应用[J]. 中国公路学报,2020,33(11):83-100.
|
[8] |
汪志昊,陈政清. 永磁式电涡流调谐质量阻尼器的研制与性能试验[J]. 振动工程学报,2013,26(3):374-379.
|
[9] |
翁大根,黄斐骏,周志光,等. 某超高层建筑电涡流TMD的减震分析[J]. 地震工程与工程振动,2014,34(增刊1):815-821.
|
[10] |
区彤,刘彦辉,谭平,等. 高耸型钢钢混凝土筒体结构抗震性能振动台试验研究[J]. 建筑结构学报,2020,43(4):36-46.
|
[11] |
区彤,刘淼鑫,刘彦辉. 高耸型钢钢筋混凝土筒体结构设置调谐质量阻尼器的减震性能试验及数值研究[J]. 特种结构,2020,37(5):95-101
,106.
|
[12] |
区彤,林松伟,刘彦辉,等. 景观塔两级变阻尼电涡流TMD减振分析与试验研究[J]. 建筑结构,2021,51(13):139-144
,51.
|
[13] |
贺辉,谭平,刘彦辉,等. 圆形高耸结构两级变阻尼TMD风振控制[J]. 振动工程学报,2020,33(3):503-508.
|
[14] |
ABAQUS Inc. Analysis user's manual[M].6.10 version. Rhode Island:ABAQUS Inc.2010.
|
[15] |
FILIATRAULT A, et al. On the computation of seismic energy in inelastic structures[J]. Engineering Structures, 1994,16(6):425-436.
|
[16] |
葛少平,李爱群. 基于ABAQUS的速度相关型阻尼器单元二次开发[J]. 工程抗震与加固改造,2014,36(3):1-6.
|
[17] |
中华人民共和国住房和城乡建设部.高层建筑混凝土结构技术规程:JGJ 3-2010[S]. 北京:中国建筑工业出版社,2011.
|
[1] | CHEN Dewen, YU Wei, WANG Wencai, HAO Rongrong, KE Shitang. Research on the Wind-Induced Interference Effect on New and Existing Cooling Towers of the Same Size[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 111-120. doi: 10.3724/j.gyjzG24042815 |
[2] | XIE Weidong, NIE Jun, ZHANG Ji, ZHANG Guangjie, WANG Lei. Experimental Research on Parallel Cylinder Reticulated Shell Closed Cargo Sheds Under Wind Load[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 196-202. doi: 10.3724/j.gyjzG23021314 |
[3] | XIA Shunjun, ZHAO Jun, MA Long, ZHANG Renqiang, DAI Ruzhang, LI Ximin. Wind Tunnel Test Study on Crane Structure with Double-Flat-Arm Derrick for Long-Span Transmission Towers[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 1-7,74. doi: 10.13204/j.gyjzG21100918 |
[4] | LI Buhui, NING Shuaipeng, ZHAO Yingneng, XUE Zhengyuan, SHEN Guohui. Drag Coefficients of Elevator Shaft of Ultra-High Long-Span Transmission Tower with Height of 385 Meters[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 28-33,118. doi: 10.13204/j.gyjzG22011304 |
[5] | ZHONG Weijun, XU Haiwei, YAO Jianfeng, LOU Wenjuan, GUO Gaopeng. Wind Tunnel Study on Precise Drag Coefficients of UHVDC Transmission Towers[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 9-15. doi: 10.13204/j.gyjzG20101801 |
[6] | XIA Liang, ZHANG Mingshan, LI Benyue. WIND-INDUCED VIBRATION ANALYSIS AND WIND-RESISTANT DESIGN OF A CANTILEVERED STRING STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 93-98,195. doi: 10.13204/j.gyjzG20032402 |
[7] | HUANG Peng, LIN Huatan, GU Ming. THE WIND TUNNEL TEST OF THE AEROELASTIC MODEL OF A STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 64-68. doi: 10.13204/j.gyjzG201906280004 |
[8] | LIU Shi, YANG Yi, HUANG Zheng, GAO Qingshui, ZHANG Chu, LI Zhengliang, WANG Zhisong. STUDY ON COLLAPSE STATES OF TRANSMISSION TOWERS BY WIND-TUNNEL TESTS OF TOWER-LINE SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 145-151. doi: 10.13204/j.gyjzGYJZ201907150004 |
[9] | HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019 |
[10] | Tian Li, Yu Qiqi, Yin Dong, Wang Qian. STATE OF THE ART: WIND-RAIN RESISTANCE OF POWER TRANSMISSION TOWER-LINE SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 101-107. doi: 10.13204/j.gyjz201406023 |
[11] | Pan Yi, Li Lingjiao, Ma Cunming, Luo Nan. WIND TUNNEL TEST ON THE TERMINAL OF DAOCHENG YADING AIRPORT IN SICHUAN[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(09): 139-144. |
[12] | Lin Yongjun, Song Changjiang, Luo Nan, Li Mingshui, Gao Xiujian. STUDY ON WIND TUNNEL TEST OF LARGE-SPAN SINGLE-LAYER RETICULATED SHELL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 130-134. doi: 10.13204/j.gyjz201307029 |
[13] | Sun Binyan, Zhang Xuwei, Chen Jiaguang. VIBRATION MODES COUPLING EFFECT IN THE WIND-INDUCED RESPONSE OF A LONG SPAN ROOF[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 139-143. doi: 10.13204/j.gyjz201208027 |
[14] | Li Yijia, Wang Xiaodun, Yu Jianxing. WIND TUNNEL TEST ON AERODYNAMIC UNSTABLE VIBRATION OF INVERTED Y TOWERS OF NEW HYBRID STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 106-110. doi: 10.13204/j.gyjz201211023 |
[15] | Qi Yueqin, Liu Lingling. STUDY ON WIND TUNNEL TEST OF WIND LOADS OF DRY COAL SHEDS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 120-124. doi: 10.13204/j.gyjz201107026 |
[16] | Liu Lin, Bai Guoliang, Li Xiaowen, Li Hongxing, Zhao Chunlian. TEST STUDY ON WIND PRESSURE DISTRIBUTION ON WIND-BREAK WALL OF SUPPORT STRUCTURE SYSTEM OF AIR COOLED CONDENSER[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 46-51. doi: 10.13204/j.gyjz200908013 |
[17] | Zhao Gengqi, Bai Guoliang, Li Xiaowen. WIND TUNNEL TEST FOR GUST FACTOR OF WIND-BREAK WALL OF THREE-SPAN AIR-COOLED CONDENSER STRUCTURE SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 39-42. doi: 10.13204/j.gyjz200903013 |
[18] | Wang Heng, Sun Bingnan, Lou Wenjuan, Shen Guohui, . CALCULATION OF WIND-INDUCED VIBRATION FACTOR OF ROOF FOR TAIZHOU STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 82-84,94. doi: 10.13204/j.gyjz200504024 |
[19] | Xiong Xueyu, Wu Xueshu. THE STUDY ON THE DURABILITY OF EXTERNALLY PRESTRESSED CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 20-24. doi: 10.13204/j.gyjz200407005 |
[20] | Jia Bin, Wang Ruheng, Wang Qinhua. WIND TUNNEL TEST OF WIND LOAD CHARACTERISTICS OF A MEGASTRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(8): 28-30. doi: 10.13204/j.gyjz200408009 |