Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Xudong, HUANG Zhenghua, HAN Han. Prediction of Fatigue Crack Initiation Life of Unstiffened CHS Steel Tube X-Joints Under Quasi-Static Loading[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 83-89,225. doi: 10.13204/j.gyjzG21070802
Citation: WANG Xudong, HUANG Zhenghua, HAN Han. Prediction of Fatigue Crack Initiation Life of Unstiffened CHS Steel Tube X-Joints Under Quasi-Static Loading[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 83-89,225. doi: 10.13204/j.gyjzG21070802

Prediction of Fatigue Crack Initiation Life of Unstiffened CHS Steel Tube X-Joints Under Quasi-Static Loading

doi: 10.13204/j.gyjzG21070802
  • Received Date: 2021-07-08
    Available Online: 2022-07-23
  • Publish Date: 2022-07-23
  • To obtain the fatigue crack initiation life of unstiffened CHS X-joints under quasi-static loading, nine groups of unstiffened joints with different geometric parameters were numerically simulated. The hybrid strengthening model of steel and the cyclic hole growth model (CVGM) were used to predict the fatigue crack initiation life of unstiffened X-joints under quasi-static loading and various equal amplitude reciprocating loads. According to the orthogonal design test theory, parametric analysis was carried out on the influencing factors of fatigue crack initiation life (diameter ratio of branch pipe to main pipe β, diameter-thickness ratio of main pipe γ) of unstiffened X-joints. The results showed that the larger the diameter ratio of branch pipe to main pipe, the smaller the crack initiation life of unstiffened X-joints. The larger the diameter-thickness ratio of the main pipe, the longer the crack initiation life of the unstiffened X-joints is. Finally, based on the parametric analysis results of crack initiation life, an empirical formula for predicting the fatigue crack initiation life of unstiffened X-joints under quasi-static loading was proposed.
  • [1]
    黄政华,张其林,杨宗林,等.平面钢管桁架的面外稳定分析模型研究[J].土木工程学报,2011,44(5):49-56.
    [2]
    KANG L, HANBIN G E. Mesh-size effect study of extremely low cycle fatigue life prediction for steel bridge piers by using different models[J]. Journal of Earthquake Engineering, 2013, 17(3/4):323-349.
    [3]
    NIP K H, GARDNER L, DA VIES C M, et al. Extremely low cycle fatigue tests on structural carbon steel and stainless steel[J]. Journal of Constructional Steel Research, 2010, 66(1):96-110.
    [4]
    石永久,王萌,王元清.结构钢材循环荷载下的本构模型研究[J].工程力学,2012,29(9):92-98

    ,105.
    [5]
    KANVINDE A M, DEIERLEIN G G. Validation of cyclic void growth model for fracture initiation in blunt notch and dogbone steel specimens[J]. Journal of Structural Engineering,2008,134(9):1528-1537.
    [6]
    KANVINDE A M, DEIERLEIN G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics,2007,133(6):701-712.
    [7]
    廖芳芳,王伟,陈以一.往复荷载下钢结构节点的超低周疲劳断裂预测[J].同济大学学报(自然科学版),2014,42(4):539-546,617.
    [8]
    TATEISHI K, HANJI T, MINAMI K. A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29(5):887-896.
    [9]
    XUE L. A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading[J]. International Journal of Fatigue, 2008, 30(10/11):1691-1698.
    [10]
    HANBIN G E, KANG L. A damage index-based evaluation method for predicting the ductile crack initiation in steel structures[J]. Journal of Earthquake Engineering, 2012, 16(5/6):623-643.
    [11]
    夏义舒,黄政华,石小龙.基于微观机制圆钢管X型相贯节点焊缝延性断裂预测及Lode角参数分析[J].空间结构,2020,26(4):75-82.
    [12]
    孟宪德,陈以一,王伟.X形圆钢管相贯节点平面外受弯滞回模型研究[J].土木工程学报,2012,45(8):8-14.
    [13]
    王伟,陈以一.圆钢管相贯节点局部刚度的参数公式[J].同济大学学报(自然科学版),2003(5):515-519.
    [14]
    KUROBANE Y, MAKINO Y, OCHI K. Ultimate resistance of unstiffened tubular joints[J]. Journal of Structural Engineering, 1984, 120:385-400.
    [15]
    LIAO F F, WANG W, CHEN Y Y. Parameter calibrations and application of micromechanicalfracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2):153-174.
    [16]
    廖芳芳.钢材微观断裂判据研究及在节点延性断裂预测中的应用[D].上海:同济大学,2012.
    [17]
    MANSON S S. Behaviour of materials under conditions of thermal stress[J]. Nasa Tnd, 1954,7(S3/S4):661-665.
    [18]
    COFFIN J L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers, 1954, 76:931-950.
    [19]
    MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3):159-164.
  • Relative Articles

    [1]ZHAO Bingzhen, HAN Yibo, LI Pengfei, LI Yang, CHEN Zhihua, WANG Jun, LIU Hongbo, WANG Tiansong, LIU Yang. Analysis of the Vertical Bearing Performance of a Double-Layer Steel Truss Bridge with Arched Stiffening Chords[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 52-57. doi: 10.3724/j.gyjzG24082604
    [2]LIU Hongbo, QIU Can, YUAN Yanpeng, GAO Xiujian, JING Sinan, LIU Wenrui, CHEN Zhihua. Experiments and Numerical Simulations for the Intersecting Joints of the Steel Structure of Shenzhen Universiade Comprehensive Transportation Hub Station[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 78-86. doi: 10.3724/j.gyjzG24033103
    [3]HUANG Tao, LI Buhui, ZHU Jiao, Ning Shuaipeng, TAN Lei. Application Analysis of Cast Steel Tubular Joints in Super High-Rise Long-Span Steel Tubular Transmission Towers[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 35-40. doi: 10.13204/j.gyjzG21113012
    [4]SONG Taiyu, ZHENG Xinguang, SUN Xuxia, BAI Zhijuan. Spatial Grid Model with Diagonal Beam Elements Based on the Optimization of Spatial Mechanical Behaviors[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 88-94. doi: 10.13204/j.gyjzG22081819
    [5]HUANG Wenxiong, WANG Junhui, MEI Hongjie, QIN Xiang, LIU Yonghang. Mechanical Properties Test and Finite Element Analysis of Prefabricated CFST Column-RC Beam Frame with Embedded Steel[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 157-163. doi: 10.13204/j.gyjzG22062711
    [6]YU Jinghai, HAN Ping, LI Luchuan, YAN Xiangyu, ZHAO Siyu. Experimental and Finite Element Analysis of New Type of Cross-Shaped Gusset-Plate Support Connections to Slotted Tubular Memebers[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 129-137. doi: 10.13204/j.gyjzG20121409
    [7]XUE Suduo, LU Jian, LI Xiongyan, LIU Renjie. RESEARCH ON THE SCHEME OF CABLE-SUPPORTED MEMBRANE ROOF OF CABLE-SUPPORTED STRUCTURE WITHOUT INNER HOOP[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 97-102,92. doi: 10.13204/j.gyjz202004018
    [8]YU Jinghai, HE Mengjie, ZHAO Yuyang, ZHANG Bo, TANG Yuxuan. EXPERIMENTAL STUDY OF COMPOSITE PRESTRESSED CONCRETE SLABS WITH CONCRETE-FILLED TUBULAR STEEL TRUSSES CONNECTED BY CLOSE JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 58-66. doi: 10.13204/j.gyjz202006010
    [13]Zhang Jiayuan, Wu Yun, He Peng. RESEARCH ON FATIGUE LIFE OF CFST TUBULAR JOINTS BASED ON BILINEAR MODEL[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 122-125. doi: 10.13204/j.gyjz201011029
    [14]Wu Zhigang, Shi Yan, Zhang Li, Hao Tinyu, Hou Xueli, Tu Yubo. EXPERIMENTAL RESEARCH ON HIGH PERFORMANCE CONCRETE FOR BOX GIRDERS OF HIGH SPEED RAILWAY[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 9-12. doi: 10.13204/j.gyjz201011003
    [15]Luo Sihai, Shen Jiaxi. DISCUSSION ON THE VALUE OF STRENGTH FOR THE PRELOADED-CONSOLIDATED FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 118-119,132. doi: 10.13204/j.gyjz200905026
    [16]Li Shuchun, Diao Bo, Ye Yinghua. DAMAGE SENSITIVITY ANALYSIS OF L-SHAPED SECTION BASED ON ORTHOGONAL DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 5-9. doi: 10.13204/j.gyjz200705002
    [17]Zhang Yang, Zhang Yaochun. IN-PLANE GLOBAL STABILITY OF SPACE LATTICE TILTED COLUMN FRAME OF TRIANGLE SECTION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 71-74. doi: 10.13204/j.gyjz200503025
  • Cited by

    Periodical cited type(2)

    1. 温志宏,李照伟,魏海丰,龙帮云. 方钢管覆板及竖向插板加强节点平面内抗弯性能. 工业建筑. 2025(02): 130-137 . 本站查看
    2. 刘红波,邱灿,原燕鹏,高修建,井司南,刘文锐,陈志华. 深圳大运综合交通枢纽站房钢结构相贯节点试验与数值模拟. 工业建筑. 2024(08): 78-86 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-0602468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.6 %FULLTEXT: 20.6 %META: 78.7 %META: 78.7 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.8 %其他: 16.8 %China: 0.6 %China: 0.6 %保定: 0.6 %保定: 0.6 %北京: 1.9 %北京: 1.9 %常德: 1.9 %常德: 1.9 %廊坊: 0.6 %廊坊: 0.6 %张家口: 1.3 %张家口: 1.3 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.3 %杭州: 1.3 %漯河: 1.3 %漯河: 1.3 %芒廷维尤: 13.5 %芒廷维尤: 13.5 %芝加哥: 0.6 %芝加哥: 0.6 %西宁: 44.5 %西宁: 44.5 %西安: 0.6 %西安: 0.6 %贵阳: 1.9 %贵阳: 1.9 %运城: 6.5 %运城: 6.5 %郑州: 1.3 %郑州: 1.3 %钦州: 0.6 %钦州: 0.6 %长沙: 0.6 %长沙: 0.6 %长治: 0.6 %长治: 0.6 %阳泉: 0.6 %阳泉: 0.6 %青岛: 0.6 %青岛: 0.6 %其他China保定北京常德廊坊张家口晋城朝阳杭州漯河芒廷维尤芝加哥西宁西安贵阳运城郑州钦州长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(1) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return