Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Li Yi, Zhao Wen, Yan Yunqi. METHOD OF CONTINUAL ANALYSIS FOR SYSTEM RELIABILITY[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 26-28,39. doi: 10.13204/j.gyjz200510009
Citation: LIU Yejin, ZHOU Changshun. Study on Mechanical Properties and Microstructure of Recycled Aggregate Concrete Containing Steel Slag Powder and Metakaolin[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 133-138,157. doi: 10.13204/j.gyjzG21062503

Study on Mechanical Properties and Microstructure of Recycled Aggregate Concrete Containing Steel Slag Powder and Metakaolin

doi: 10.13204/j.gyjzG21062503
  • Received Date: 2021-06-25
    Available Online: 2022-06-30
  • Publish Date: 2022-02-20
  • To improve the utilization rate of steel slag powder (SSP) as mineral admixture in cement-based materials, and to enhance the mechanical properties of recycled aggregate concrete (RAC), the influences of SSP and MK on the mechanical properties and microstructure of RAC were studied. The mechanical test results showed that the compressive strength of the mineral admixture at 28 d and 90 d was respectively increased by 13.3% and 18% as the mass fraction of MK in mineral admixture was 30%, compared with that of the reference group, and the changing trend of elastic modulus was similar to that of the compressive strength. Microstructural tests indicated that SSP and MK mixed with Ca(OH)2 decreased the peak strength, generated additional C-S-H gel and increased the percentage of high density C-S-H, which significantly improved the microstructure and interfacial transition zone of RAC in the later stage. These were attributed to the better volcanic ash activity and micro-aggregate filling effect of SSP and MK mixed mixture.
  • [1]
    张明明,王社良,张世民,等.矿物掺合料对再生混凝土力学性能的影响[J].硅酸盐通报, 2017, 36(5):1505-1511.
    [2]
    梁超锋,何佳俊,肖建庄,等.再生骨料混凝土梁的阻尼性能及其机理分析[J].同济大学学报(自然科学版), 2018, 46(6):737-743.
    [3]
    郭鹏,韦万峰,杨帆,等.再生集料及再生混凝土界面过渡区研究进展[J].硅酸盐通报, 2017(7):2280-2286,2292.
    [4]
    孙冰,肖茁良,陈露辉,等.再生混凝土力学性能研究进展[J].硅酸盐通报, 2017, 36(2):497-502.
    [5]
    丁天庭,李启华,陈树东.再生混凝土的强度及耐久性能研究[J].硅酸盐通报, 2017, 36(3):846-850.
    [6]
    SHI C. Steel slag-its production, processing, characteristics, and cementitious properties[J]. Journal of Materials in Civil Engineering, 2004, 16(3):230-236.
    [7]
    JIANG Y, LING T C, SHI C, et al. Characteristics of steel slags and their use in cement and concrete:a review[J]. Resources, Conservation and Recycling, 2018, 136:187-197.
    [8]
    WANG Q, YANG J, YAN P. Cementitious properties of super-fine steel slag[J]. Powder Technology, 2013, 245:35-39.
    [9]
    HU S, WANG H, ZHANG G, et al. Bonding and abrasion resistance of geopolymeric repair material made with steel slag[J]. Cement and Concrete Composites, 2008, 30(3):239-244.
    [10]
    TSAKIRIDIS P E, PAPADIMITRIOU G D, TSIVILIS S, et al. Utilization of steel slag for Portland cement clinker production[J]. Journal of Hazardous Materials, 2008, 152(2):805-811.
    [11]
    SONG Q, YU R, SHUI Z, et al. Physical and chemical coupling effect of metakaolin induced chloride trapping capacity variation for ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2019, 223:765-774.
    [12]
    SIDDIQUE R, KLAUS J. Influence of metakaolin on the properties of mortar and concrete:A review[J]. Applied Clay Science, 2009, 43(3/4):392-400.
    [13]
    OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583.
    [14]
    BROOKS J J, JOHARI M A M. Effect of metakaolin on creep and shrinkage of concrete[J]. Cement and Concrete Composites, 2001, 23(6):495-502.
    [15]
    WANG Q, YAN P, YANG J, et al. Influence of steel slag on mechanical properties and durability of concrete[J]. Construction and Building Materials, 2013, 47:1414-1420.
    [16]
    GÜNEYISI E, MERMERDAŞ K. Comparative study on strength, sorptivity, and chloride ingress characteristics of air-cured and water-cured concretes modified with metakaolin[J]. Materials and Structures, 2007, 40(10):1161.
    [17]
    胡瑾,王强,杨建伟.钢渣-硅灰复合矿物掺合料对混凝土性能的影响[J].清华大学学报(自然科学版), 2015, 55(2):145-149.
    [18]
    ZHANG B, TAN H, MA B, et al. Preparation and application of fine-grinded cement in cement-based material[J]. Construction and Building Materials, 2017, 157:34-41.
    [19]
    ZHANG B, TAN H, SHEN W, et al. Nano-silica and silica fume modified cement mortar used as surface protection material to enhance the impermeability[J]. Cement and Concrete Composites, 2018, 92:7-17.
    [20]
    HU C, LI Z. A review on the mechanical properties of cement-based materials measured by nanoindentation[J]. Construction and Building Materials, 2015, 90:80-90.
    [21]
    MONDAL P, SHAH S P, MARKS L. A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials[J]. Cement and Concrete Research, 2007, 37(10):1440-1444.
    [22]
    FOLEY E M, KIM J J, TAHA M M R. Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (CSH) made with 1.5 CaO/SiO2 mixture[J]. Cement and Concrete Research, 2012, 42(9):1225-1232.
    [23]
    崔孝炜,冷欣燕,南宁,等.机械力活化对钢渣粒度分布和胶凝性能的影响[J].硅酸盐通报, 2018, 37(12):3821-3826.
    [24]
    管宗甫,余远明,王云浩,等.钢渣粉煤灰复掺对水泥性能的影响[J].硅酸盐通报, 2011(6):142-146.
  • Relative Articles

    [1]ZHOU Wansen, ZHONG Jufang, ZHANG Yanhong, HU Xiao. Research on Time-Frequency Parameter Prediction Models of Ground Motion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105
    [2]SUN Xiaoyun, HUANG Linjie, ZENG Bin, SHI Zheng, XIE Qin. Analysis of Seismic Performance of Self-Centering Concrete Frame Structures Characterized by Low Prestressing and Slope Friction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 38-45. doi: 10.3724/j.gyjzG24091003
    [3]SUI Weining, MA Yong, YANG Haitao, WU Jinguo. Experimental Study on Mechanical Properties of a New Connection Joint Between PC External Wall Panel and Steel Frame with Frictional Energy Dissipation[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 109-117. doi: 10.13204/j.gyjzG22011501
    [4]LIU Hang, LI Mu, YANG Xuezhong, HAN Mingjie, TIAN Yuji. Experimental Research on Seismic Performance of Self-centering Prefabricated RC Frame Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 65-73. doi: 10.13204/j.gyjzG21062601
    [5]HUANG Linjie, ZENG Bin, ZHOU Zhen, ZHANG Wenqing, SANG Chenxu, ZHANG Jingru. Influence of Joint Stiffness After Gap Opening on Seismic Performance of Self-Centering Prestressed Concrete Frames with Variable Friction Dampers[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 88-93. doi: 10.13204/j.gyjzG22072916
    [6]CHANG Zhaoqun, LIU Boquan, HAN Meng, BAI Tao, XING Guohua, WANG Shuangbing. DESIGN AND NUMERICAL ANALYSIS OF AN INNOVATIVE SELF-CENTERING FRICTION DAMPER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 138-142,221. doi: 10.13204/j.gyjzG20080402
    [7]HUANG Ming, LIU Ye, DING Yi, LYU Qingfang. EXPERIMENTAL RESEARCH ON SELF-CENTERING CLB ROCKING WALL EQUIPPED WITH CFD[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 40-46,61. doi: 10.13204/j.gyjzG21042509
    [8]HAN Tengfei, XU Gang, LI Liang, LI Xiaodong, XI Xiangdong. RESEARCH AND APPLICATION OF SHEAR RESISTANCE OF FRICTION CONNECTION WITH HIGH STRENGTH BOLTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 133-136. doi: 10.13204/j.gyjzG201909120001
    [9]HUANG, Linjie, ZHOU, Zhen. INVESTIGATION ON INFLUENCE OF INFILL WALLS ON HIGHER MODE EFFECT OF SELF-CENTERING PRESTRESSED CONCRETE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 34-39. doi: 10.13204/j.gyjz202001007
    [10]MENG, Shaoping, CAI, Xiaoning. RESEARCH PROGRESS ON PRESTRESSED SELF-RESETTING CONCRETE FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 1-6. doi: 10.13204/j.gyjz202001001
    [11]MA, Junfeng, ZHOU, Zhen. HYSTERICAL BEHAVIOR OF AN UPPER-BOTTOM FRICTION DAMPER SELF-CENTERING PRESTRESSED CONCRETE BEAM-COLUMN CONNECTION WITH HIDDEN CORBEL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 16-21,124. doi: 10.13204/j.gyjz202001004
    [14]Liu Pengfei, Zhao Qilin, Jiang Kebin, Gao Hesheng. THEORETIC RESEARCH ON FRICTION LOSS OF PRE-STRESS IN LARGE-SPAN CONCRETE BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 64-67. doi: 10.13204/j.gyjz201110016
    [15]Wu Yingjun, Chen Zhihua, LüQing. RESEARCH AND APPLICATION OF ROLL CABLE-STRUT JOINT IN SUSPEND-DOME[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 27-29,34. doi: 10.13204/j.gyjz201008007
    [16]Wu Zhuanqin, Zeng Zhaobo, Shang Renjie, Liu Jingliang. EXPERIMENTAL STUDY ON FRICTION COEFFICIENT OF RETARD-BONDED PRESTRESSING STRAND[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 20-23. doi: 10.13204/j.gyjz200811006
    [17]Cai Jiangyong. IMPROVING SUGGESTION ON CALCULATION METHOD OF FRICTION LOSS IN PRESTRESSED CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 94-95,75. doi: 10.13204/j.gyjz200404029
  • Cited by

    Periodical cited type(1)

    1. 张文超,李帅. 结构抗震时程分析输入地震波选择方法研究. 砖瓦. 2024(07): 73-75 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 84.0 %META: 84.0 %PDF: 1.5 %PDF: 1.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %China: 1.5 %China: 1.5 %上海: 0.5 %上海: 0.5 %保定: 0.5 %保定: 0.5 %信阳: 0.5 %信阳: 0.5 %北京: 4.1 %北京: 4.1 %南通: 0.5 %南通: 0.5 %南阳: 0.5 %南阳: 0.5 %厦门: 0.5 %厦门: 0.5 %台州: 0.5 %台州: 0.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %大庆: 0.5 %大庆: 0.5 %天津: 0.5 %天津: 0.5 %太原: 0.5 %太原: 0.5 %宁波: 0.5 %宁波: 0.5 %宿州: 1.0 %宿州: 1.0 %常德: 0.5 %常德: 0.5 %廊坊: 1.0 %廊坊: 1.0 %延安: 0.5 %延安: 0.5 %张家口: 5.2 %张家口: 5.2 %无锡: 1.5 %无锡: 1.5 %昆明: 0.5 %昆明: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.5 %杭州: 1.5 %桂林: 0.5 %桂林: 0.5 %沈阳: 0.5 %沈阳: 0.5 %深圳: 0.5 %深圳: 0.5 %潍坊: 0.5 %潍坊: 0.5 %芒廷维尤: 11.9 %芒廷维尤: 11.9 %芝加哥: 3.1 %芝加哥: 3.1 %苏州: 0.5 %苏州: 0.5 %蚌埠: 1.0 %蚌埠: 1.0 %西宁: 34.5 %西宁: 34.5 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 5.7 %运城: 5.7 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.5 %郑州: 1.5 %金华: 0.5 %金华: 0.5 %长沙: 0.5 %长沙: 0.5 %阳泉: 2.1 %阳泉: 2.1 %黄冈: 0.5 %黄冈: 0.5 %其他China上海保定信阳北京南通南阳厦门台州呼和浩特嘉兴大庆天津太原宁波宿州常德廊坊延安张家口无锡昆明晋城朝阳杭州桂林沈阳深圳潍坊芒廷维尤芝加哥苏州蚌埠西宁西安贵阳运城邯郸郑州金华长沙阳泉黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads(0) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return