Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HE Shaohua, LI Xuming, QIU Yitao, WANG Yi. Experimental Research on Mix Proportion and Compressive Size Effect of ECC in the Hygrothermal Curing Environment in South China[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 164-170,226. doi: 10.13204/j.gyjzG21061808
Citation: HE Shaohua, LI Xuming, QIU Yitao, WANG Yi. Experimental Research on Mix Proportion and Compressive Size Effect of ECC in the Hygrothermal Curing Environment in South China[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 164-170,226. doi: 10.13204/j.gyjzG21061808

Experimental Research on Mix Proportion and Compressive Size Effect of ECC in the Hygrothermal Curing Environment in South China

doi: 10.13204/j.gyjzG21061808
  • Received Date: 2021-06-18
  • In order to study the mix proportion and compression size effect of engineered cementitious composites (ECC) under hygrothermal curing environment with average relative humidity of 80% and daytime average temperature of 30 ℃ in spring and summer, material tests on 108 specimens in 2 categories involving variables of fly ash, polyvinyl alahol fiber (PVA) fibers, curing environment, and geometrical dimensions were conducted. Based on the experimental results, favorable mix proportions and size effect coefficients of the ECC under the hygrothermal curing environment were obtained. The results indicated that the compression, shearing, and tensile performance of ECC was determined by the amount of PVA fibers, and the fly ash contributed to the shear strength of ECC, but reduced its tensile strength. Under the hygrothermal curing environment of South China, the ECC mix proportion with 35% fly ash and 1.0% PVC fibers had the most favorable mechanical properties, and the size effect coefficients for cubic and prism strengths of the ECC were fcu70.7fcu100fcu150=0.93∶1.00∶0.78 and fc70.7fc100fc150=0.96∶1.00∶0.93, respectively. The temperature and humidity had obvious size effect on the prism and cube specimen with the cross section of 70.7 mm side length.
  • [1]
    LI V C,LEUNG C K Y.Steady state and multiple cracking of short random fiber composites[J].Journal of Engineering Mechanics,ASCE,1992,188(11):2246-2264.
    [2]
    LI V C.On engineered cementitious composites (ECC) a review of the material and its applications[J].Journal of Advanced Concrete Technology,2003,1(3):215-230.
    [3]
    TURK K,NEHDI M L.Flexural toughness of sustainable ECC with high-volume substitution of cement and silica sand[J].Construction and Building Materials,2021,270.https://doi.org/10.1016/j.conbuildmat.2020.121438.
    [4]
    张志刚,张仁毅,张沛,等.可自修复的高延性混凝土(ECC)在机场道面的适用性分析[J].重庆大学学报,2021,44(1):97-105.
    [5]
    王衍.高韧性纤维增强水泥基复合材料物理力学性能试验研究[D].哈尔滨:哈尔滨工业大学,2016.
    [6]
    邓明科,秦萌,梁兴文.高延性纤维混凝土抗压性能试验研究[J].工业建筑,2015,45(4):120-126.
    [7]
    BEUSHAUSEN H,GILLMER M,ALEXANDER M.The influence of superabsorbent polymers on strength and durability properties of blended cement mortars[J].Cement& Concrete Composite,2014,52:73-80.
    [8]
    郭寅川,黄忠财,王文真,等.湿热环境下SAP内养生混凝土抗碳化性能及机理研究[J].建筑材料学报,2022,25(1):16-23.
    [9]
    胡春红,高艳娥,丁万聪.超高韧性水泥基复合材料受压性能试验研究[J].建筑结构学报,2013,34(12):128-132

    ,154.
    [10]
    梁济丰,吕磊,余晓青.聚乙烯醇纤维增强水泥基复合材料力学性能试验研究[J].混凝土与水泥制品,2013(11):48-51.
    [11]
    王振波,韩宇栋.高延性水泥基材料高温力学性能研究进展[J].三峡大学学报(自然科学版),2019,41(5):65-69.
    [12]
    DANG J T,HAO J,DU Z H.Effect of superabsorbent polymer on the properties of concrete[J].Polymers,2017,9:672.https://doi.org/10.33p0/polym9120672.
    [13]
    GAO S L,HU G H.Experimental study on biaxial dynamic compressive properties of ECC[J].Materials,2021,14.https://doi.org/10.3390/ma14051257.
    [14]
    WU H L,YU J,DU Y J,et al.Mechanical performance of MgO-doped engineered cementitious composites (ECC)[J].Cement and Concrete Composites,2021,115.https://doi.org/10.1016/j.cemconcomp.2020.103857.
    [15]
    NGUYEN H H,CHOI J I,PARK S E,et al.Autogenous healing of high strength engineered cementitious composites (ECC) using calcium-containing binders[J].Construction and Building Materials,2020,265(30).https://doi.org/10.1016/j.conbuildmat.2020.120857.
    [16]
    何淅淅,甘甜.ECC抗压强度及其尺寸效应的试验研究[J].建筑技术,2019,50(2):113-116.
    [17]
    邓明科,常云涛,梁兴文,等.高延性水泥基复合材料抗压强度尺寸效应的正交试验研究[J].工业建筑,2013,43(7):80-85.
    [18]
    李雪阳,江世永,飞渭,等.高韧性水泥基复合材料强度尺寸效应试验研究与正交分析[J].中国材料进展,2017,36(6):473-478.
    [19]
    朱长书,孙林柱,王雨,等.PVA纤维增强水泥基材料尺寸效应及相关性能研究[J].混凝土与水泥制品,2015(12):58-61.
    [20]
    李庆华,周宝民,黄博滔,等.超高韧性水泥基复合材料抗压性能的尺寸效应研究[J].水利学报,2015,46(2):174-182.
    [21]
    秦萌.高延性纤维混凝土受压力学性能试验研究[D].西安:西安建筑科技大学,2014.
    [22]
    王晶.高延性水泥基复合材料力学性能试验研究[D].西安:西安建筑科技大学,2013.
    [23]
    黄可,周旭.PVA-ECC单轴抗压试验及本构关系[J].四川建筑科学研究,2020(4):75-81.
    [24]
    于浩.高延性混凝土基本力学性能与弯曲韧性的尺寸效应研究[D].西安:西安建筑科技大学,2018.
    [25]
    FISCHER G.Deformation behavior of reinforced ECC flexural members under reversed cyclic loading conditions[D].Michigan:University of Michigan,2002:40.
    [26]
    李晓琴,周旭,李世华.粉煤灰掺量对PVA-ECC性能的影响[J].硅酸盐通报,2020,39(12):3783-3790.
    [27]
    刘从亮,毕远志,华渊.高掺量粉煤灰PVA-ECC的力学性能研究及粉煤灰作用机理分析[J].硅酸盐通报,2017,36(11):3739-3744.
    [28]
    李可,喻鹏,刘伟康,等.工程水泥基复合材料受压性能及应力-应变关系研究[J].工业建筑,2020,50(3):172-177.
  • Relative Articles

    [1]JIANG Chenhui, TONG Huizhi, CHEN Zefeng, JIANG Pengfei. Preparation of New Composite Geopolymer Cement and Analysis on Its Influencing Factors of Compressive Strength[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 190-196. doi: 10.13204/j.gyjzG21061106
    [2]YAO Zhongyong. Research on Mix Proportion of ECC with Low Drying Shrinkage[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 171-176,215. doi: 10.13204/j.gyjzG20110912
    [3]CAO Yuxin. PROPORTION OPTIMIZATION DESIGN OF STEEL FIBER REINFORCED CONCRETE MIX FOR TUNNEL SEGMENTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 101-104,159. doi: 10.13204/j.gyjzG20010102
    [4]YE Qingyang, XUE Congcong, YU Min, WU Mingyang. MIX PROPORTION DESIGN AND COMPRESSIVE STRENGTH TEST OF ULTRA-HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 124-130,141. doi: 10.13204/j.gyjz202003021
    [5]Xia Duotian, He Mingsheng, Tang Yanjuan, Fu Xiaojian, Shi Leiwei. EXPERIMENTAL STUDY OF COMPRESSIVE STRENGTH OF THE NEW COMPOSITE BLOCK MASONRY[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 81-84. doi: 10.13204/j.gyjz201406019
    [6]Zhang Bo, Wang Sheliang, Du Yuanfang, Jing Longping. INFLUENCE OF CRUSH VALUE INDEX ON COMPRESSIVE STRENGTH OF RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 1-6. doi: 10.13204/j.gyjz201311001
    [7]Deng Mingke, Chang Yuntao, Liang Xingwen, Wang Jing. ORTHOGONAL TEST RESEARCH ON COMPRESSIVE STRENGTH SIZE EFFECT OF ENGINEERED CEMENTITIOUS COMPISITES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 80-85. doi: 10.13204/j.gyjz201307019
    [8]Gu Song, Lei Ting, Tao Junlin. EXPERIMENTAL STUDY ON MIX DESIGN AND EARLY STRENGTH OF RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 1-4. doi: 10.13204/j.gyjz201204001
    [9]Su Jie, Fang Zhi, Yang Zuan. EXPERIMENTAL STUDY ON THE SIZE EFFECT OF CONCRETE FLEXURAL STRENGTH[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 63-66. doi: 10.13204/j.gyjz201212014
    [10]Fan Xiangqian, Hu Shaowei, Zhu Haitang. THE SIZE EFFECTS OF DIFFERENT STEEL FIBER REINFORCED CONCRETE SPECIMENS UNDER THE DIFFERENT SOLUTION ENVIRONMENTS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 107-112,79. doi: 10.13204/j.gyjz201203023
    [11]Dong Xiangjun, LüChaokun. EXPERIMENTAL STUDIES ON COMPRESSIVE STRENGTH OF HPC SUBJECT TO HIGH-TEMPERATURE BASED ON MICROSTRUCTURE ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 90-93. doi: 10.13204/j.gyjz201109020
    [12]Yang Shuhui, Gao Danying, Zhao Jun. EXPERIMENTAL STUDY ON COMPRESSIVE STRENGTH OF THE FIBER REINFORCED CONCRETE WITH SLAG POWDER AFTER THE ACTION OF HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 101-104,119. doi: 10.13204/j.gyjz201101024
    [13]Zhang Xiaogang, Wang Xuezhi, Sun Rongshu. EQUIVALENT STRENGTH MODEL FOR UNILATER INTERVAL INDUCED JOINT BASED ON SIZE,BOUNDARY EFFECT AND CRACK PROPAGATION RULE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 88-91,42. doi: 10.13204/j.gyjz201106019
    [14]Huang Yubin, Qian Jueshi. STUDY ON THE INFLUENCE OF HIGH STRENGTH CONCRETE BRITTLENESS ON COMPRESSIVE STRENGTH[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(10): 95-97,139. doi: 10.13204/j.gyjz201010021
    [15]Lǘ Weijun, Lǘ Weirong. STUDY OF COMPRESSIVE STRENGTH OF GROUTED CONCRETE MASONRY[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 106-109. doi: 10.13204/j.gyjz200904024
    [16]Zhou Lianjun, Peng Zhenbin, He Zhongming, Peng Wenxiang. NUMERICAL ANALYSIS FOR SIZE EFFECT OF STRATIFIED ROCK MASS UNDER COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 81-83,105. doi: 10.13204/j.gyjz200905017
    [17]Zhang Peng, Li Qingfu, Huang Chengkui. EXPERIMENTAL STUDY ON COMPRESSIVE STRENGTH OF POLYPROPYLENE FIBER REINFORCED CEMENT STABILIZED MACADAM[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 94-96. doi: 10.13204/j.gyjz200803025
    [18]Tian Ruijun, Du Xiuli, Peng Yijiang. NUMERICAL SIMULATION ON COMPRESSION FAILURE PROCESS OF CONCRETE AND SIZE EFFECT[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 68-72112. doi: 10.13204/j.gyjz200804018
    [19]Zhang Peng, Huang Chengkui, Li Qingfu. EXPERIMENTAL RESEARCH ON COMPRESSIVE STRENGTH OF PLASTIC CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(1): 73-76,102. doi: 10.13204/j.gyjz200701019
    [20]Huang Yubin, Qian Jueshi. BRITTLENESS AND STRENGTH SIZE EFFECT OF HIGH AND SUPER HIGH STRE NGTH CONCRETES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 15-17. doi: 10.13204/j.gyjz200501004
  • Cited by

    Periodical cited type(1)

    1. 薛冰,杨建文,李秀霞,黄树强,禹智涛. 橡胶粉改性高延性水泥基复合材料纤维优化研究. 广东土木与建筑. 2023(04): 110-115 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 85.1 %META: 85.1 %PDF: 0.5 %PDF: 0.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.3 %其他: 21.3 %其他: 0.5 %其他: 0.5 %China: 1.6 %China: 1.6 %Seattle: 1.6 %Seattle: 1.6 %[]: 0.5 %[]: 0.5 %上海: 1.1 %上海: 1.1 %东莞: 0.5 %东莞: 0.5 %保定: 1.6 %保定: 1.6 %兰州: 0.5 %兰州: 0.5 %北京: 1.1 %北京: 1.1 %十堰: 0.5 %十堰: 0.5 %南京: 1.6 %南京: 1.6 %台州: 1.6 %台州: 1.6 %天津: 0.5 %天津: 0.5 %宣城: 0.5 %宣城: 0.5 %常德: 0.5 %常德: 0.5 %广州: 3.2 %广州: 3.2 %张家口: 1.6 %张家口: 1.6 %扬州: 0.5 %扬州: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.6 %杭州: 1.6 %深圳: 0.5 %深圳: 0.5 %漯河: 2.1 %漯河: 2.1 %芒廷维尤: 18.6 %芒廷维尤: 18.6 %芝加哥: 0.5 %芝加哥: 0.5 %蚌埠: 1.1 %蚌埠: 1.1 %西宁: 16.5 %西宁: 16.5 %西安: 0.5 %西安: 0.5 %贵阳: 1.6 %贵阳: 1.6 %运城: 4.8 %运城: 4.8 %郑州: 5.3 %郑州: 5.3 %长沙: 3.2 %长沙: 3.2 %长治: 1.1 %长治: 1.1 %齐齐哈尔: 0.5 %齐齐哈尔: 0.5 %其他其他ChinaSeattle[]上海东莞保定兰州北京十堰南京台州天津宣城常德广州张家口扬州晋城朝阳杭州深圳漯河芒廷维尤芝加哥蚌埠西宁西安贵阳运城郑州长沙长治齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads(1) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return