In order to meet the requirements of high stiffness and high bearing capacity of special low-rise light-weight building structure,a kind of cold-formed thin-walled steel double-limb battened-plate lattice column was proposed to study the axial bearing capacity.The influence mechanism of the edge stiffener length,web thickness and the number of batten plates on the bearing capacity of thin-walled steel lattice columns under axial compression was analyzed by using ABAQUS finite element software.The load-displacement curve,stress development trend and failure mode of the grid columns under various working conditions were obtained.The results showed that the bearing capacity of cold-formed thin-walled steel lattice columns with the same section decreased with the increase of the length of the columns,and the failure mode of the members changed from strength failure to overall instability failure,and the local buckling and distortion buckling were accompanied.The increase of plate thickness had a great influence on the axial compression capacity of cold-formed thin-walled steel lattice columns,while the influence of the edge stiffener length and the number of batten plates on the bearing capacity of the thin-steel lattice column under axial compression was not positive.Through comparative analysis,the thin-walled steel double-limb battened-plate lattice columns had high bearing capacity and good lateral stiffness under axial compression. Within the range of section size parameters of lattice columns,it was suggested that the thickness of thin-walled steel of lattice columns should be 1.0-1.5 mm,the spacing of batten plates should be 300 mm,and the length of edge stiffeners should be 1/3 of the section height,so as to provide a reference for the design of members.
YAN J, YOUNG B.Column Tests of Cold-Formed Steel Channels with Complex Stiffeners[J].Journal of Structural Engineering, 2002, 128(6):737-745.
[4]
YOUNG B, YAN J.Design of Cold-Formed Steel Channel Columns with Complex Edge Stiffeners by Direct Strength Method[J].Journal of Structural Engineering, 2004, 130(11):1756-1763.
[5]
Standards of Australia and Standards of New Zealand.Cold-Formed Steel Structures:AS/NZS 4600[S].Sydney:Standards Australia, 2005.
[6]
SCHAFER B W.Local, Distortional and Euler Buckling in Thin-Walled Columns[J].Journal of Structural Engineering, ASCE, 2002, 18(3):289-299.
[7]
SCHAFER B W.Review:the Direct Strenth Method of Cold-Formed Steel Member Design[J].Journal of Constructional Steel Research, 2008, 64(7/8):766-778.