Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
NING Xiliang, WANG Wanping, HAO Shuai, ZHAO Zishun, ZHANG Fashan. EFFECT OF DIFFERENT FIBERS ON FROST RESISTANCE OF CONCRETE UNDER MULTIPLE FACTORS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 122-128. doi: 10.13204/j.gyjzG19110401
Citation: QU Xiao, YAO Yangping, LUO Xiaoying, CHEN Dong. A Calculation Method for Vapor Migration in the Earth's Surface of “the Pot Cover Effect”[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 194-198. doi: 10.13204/j.gyjzG21040602

A Calculation Method for Vapor Migration in the Earth's Surface of “the Pot Cover Effect”

doi: 10.13204/j.gyjzG21040602
  • Received Date: 2021-04-06
    Available Online: 2022-07-23
  • Publish Date: 2022-07-23
  • Pot cover effect refers to the phenomenon that moisture accumulates underneath an airproof cover in the earth's surface. "Pot cover effect" may lead to a high moisture content in soil under the cover and induce engineering disasters. At present, numerical simulations of multi-field coupling are mostly used in the calculation for vapor migration, the processes of calculations are tedious and inconvenient. Accordingto the actual engineering conditions, the calculation formula for temperature at different depth was deduced. Based on the Fick’s law, the formula for calculating the amount of vapor migration was inferred. By combining the above formulas, a simple calculation method of vapor migration on "pot cover effect" was proposed. The calculated values were compared with the measured values. The results showed that the calculation method could reflect the trend of vapor migration in the earth at different depths. The calculation method was effective and feasible.
  • [1]
    李强,姚仰平,韩黎明,等.土体的"锅盖效应"[J].工业建筑,2014,44(2):69-71.
    [2]
    姚仰平,王琳,王乃东.干寒区锅盖效应致灾特征及案例分析[J].工业建筑,2016,46(9):21-24.
    [3]
    姚仰平,王琳.影响锅盖效应因素的研究[J].岩土工程学报,2018,40(8):1373-1382.
    [4]
    姚仰平,王琳,王乃东,等.锅盖效应的形成机制及其防治[J].工业建筑,2016,46(9):1-5.
    [5]
    YAO Y P,WANG L. Double pot cover effect in unsaturated soils[J].Acta Geotechnica, 2019, 14(4):1037-1047.
    [6]
    罗汀,陈含,姚仰平,等.锅盖效应水分迁移规律分析[J].工业建筑,2016,46(9):6-9.
    [7]
    罗汀,陈含,姚仰平,等.寒区路基土锅盖效应气态水迁移试验研究[J].天津大学学报(自然科学与工程技术版),2019,52(增刊1):29-34.
    [8]
    BAI R Q, LAI Y M, ZHANG M Y,ET AL. Water-vapor-heat behavior in a freezing unsaturated coarse-grained soil with a closed top[J]. Cold Regions Science and Technology,2018,155:120-126.
    [9]
    GAO J Q, LAI Y M, ZHANG M Y, et al. Experimental study on the water-heat-vapor behavior in a freezing coarse-grained soil[J]. Applied Thermal Engineering, 2018,128:956-965.
    [10]
    XIAO Z A, LAI Y M, ZHANG J. A thermodynamic model for calculating the unfrozen water content of frozen soil[J]. Cold Regions Science and Technology,2019,172.https://doi.org/10.1016/j.coldregions.2020.103011.
    [11]
    张如如,赵云,徐文杰,等.温度作用下机场跑道土基中水气运移规律分析[J].浙江大学学报(工学版),2016,50(5):822-830.
    [12]
    ZHANG S, TENG J, HE Z, et al. Canopy effect caused by vapour transfer in covered freezing soils[J].Géotechnique, 2016, 66(11):927-940.
    [13]
    张升,贺佐跃,滕继东,等.非饱和土水汽迁移与相变:两类"锅盖效应"的试验研究[J].岩土工程学报,2017,39(5):961-968.
    [14]
    滕继东,贺佐跃,张升,等.非饱和土水气迁移与相变:两类"锅盖效应"的发生机理及数值再现[J].岩土工程学报,2016,38(10):1813-1821.
    [15]
    宋二祥,罗爽,孔郁斐,等.路基土体"锅盖效应"的数值模拟分析[J].岩土力学,2017,38(6):1781-1788.
    [16]
    近藤佳宏.日本土木学会论文报告集[G].上海:同济大学道路与交通研究所,1976.
    [17]
    Monteith J, Unsworth M. Principles of Environmental Physics,[M]. 4th Edition. Burlington:Elsevier Inc.,2014.
    [18]
    TETENS O. Uber einige meteorlogische begriffe[J]. Zeitschrift Fur Geophysik, 1930(6):297-309.
    [19]
    LUO T, QU X, WANG N D, et al. Pot cover effect and its prevention:an experimental study in the field[J]. Cold Regions Science and Technology, 2019, 167. https://doi.org/10.1016/j.coldregions.2019.102845.
    [20]
    TAYLOR G S, LUTHIN J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4):548-555.
    [21]
    赵舒扬.G214国道多年冻土路基地温特性及路基保护措施研究[D].北京:北京交通大学,2018.
    [22]
    周家作,谭龙,韦昌富,等.土的冻结温度与过冷温度试验研究[J].岩土力学, 2015,36(3):777-785.
  • Relative Articles

    [1]LI Shunqun, WU Qiong, ZHANG Fan, LI Lijun. INFLUENCES OF THE WATER CONTENT ON SOIL THERMAL CONDUCTIVITY COEFFICIENTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 177-180. doi: 10.13204/j.gyjzG20070106
    [2]YUAN Kairong, WANG Yuying, LIU Yan, YANG Liu. EFFECT OF DIFFERENT SATURATED WATER VAPOR PRESSURE FORMULAS ONOUTDOOR WET BULB TEMPERATURE CALCULATION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 101-106. doi: 10.13204/j.gyjzG19113004
    [8]Li Qiang, Yao Yangping, Han Liming, Hu Jing, Peng Ren, Wang Naidong. POT-COVER EFFECT OF SOIL[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 69-71. doi: 10.13204/j.gyjz201402016
    [9]Li Chao, Zeng Jian. FEEL AND COMPREHEND THE NEW BUILDINGS:ELEMENTARY ANALYSIS OF DESIGN PHILOSOPHY AND PRACTICE OF MURPHY/JAHN ARCHITECTS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 133-136. doi: 10.13204/j.gyjz200905030
    [10]Zhou Qiujuan, Chen Xiaoping, Zeng Lingling. RESEARCH ON NEURAL NETWORK MODEL OF DEFORMATION BEHAVIOR OF SOFT SOIL[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 48-53. doi: 10.13204/j.gyjz200806014
    [11]Shi Minglei, Zhang Bo. STUDY ON INTERACTION CHARACTERISTICS BETWEEN CLAY AND REINFORCEMENT[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 50-54. doi: 10.13204/j.gyjz200504015
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.1 %FULLTEXT: 15.1 %META: 84.9 %META: 84.9 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.1 %其他: 14.1 %China: 1.2 %China: 1.2 %保定: 0.4 %保定: 0.4 %北京: 3.3 %北京: 3.3 %合肥: 0.4 %合肥: 0.4 %安康: 0.8 %安康: 0.8 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %张家口: 0.8 %张家口: 0.8 %无锡: 0.8 %无锡: 0.8 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %洛阳: 0.4 %洛阳: 0.4 %漯河: 0.4 %漯河: 0.4 %芒廷维尤: 41.1 %芒廷维尤: 41.1 %芝加哥: 0.8 %芝加哥: 0.8 %西宁: 23.2 %西宁: 23.2 %西安: 1.7 %西安: 1.7 %贵阳: 1.2 %贵阳: 1.2 %运城: 4.1 %运城: 4.1 %郑州: 1.2 %郑州: 1.2 %重庆: 0.8 %重庆: 0.8 %阳泉: 0.8 %阳泉: 0.8 %其他China保定北京合肥安康常州常德广州张家口无锡晋城朝阳洛阳漯河芒廷维尤芝加哥西宁西安贵阳运城郑州重庆阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (216) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return