Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 9
Jan.  2022
Turn off MathJax
Article Contents
YANG Zhao, DOU Nan, DONG Hao. EXPERIMENTAL RESEARCH ON BONDING PROPERTIES OF SHAPE-MEMORY ALLOY FIBERS IN HIGH DUCTILITY CEMENT-BASED COMPOSITES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 188-196. doi: 10.13204/j.gyjzG21022004
Citation: YANG Zhao, DOU Nan, DONG Hao. EXPERIMENTAL RESEARCH ON BONDING PROPERTIES OF SHAPE-MEMORY ALLOY FIBERS IN HIGH DUCTILITY CEMENT-BASED COMPOSITES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 188-196. doi: 10.13204/j.gyjzG21022004

EXPERIMENTAL RESEARCH ON BONDING PROPERTIES OF SHAPE-MEMORY ALLOY FIBERS IN HIGH DUCTILITY CEMENT-BASED COMPOSITES

doi: 10.13204/j.gyjzG21022004
  • Received Date: 2021-02-20
    Available Online: 2022-01-11
  • The cooperative work of high ductility cement-based composites and hyperelastic shape-memory alloy (SMA) can improve the energy-dissipation capacity and self-repair capacity of structure. The use of shape-memory alloy fiber can effectively solve some problems of shape-memory alloy bars or cables, so it has a broader application prospect. Several groups of test specimens were fabricated by embedding superelastic shape-memory alloy fibers with different diameters and end shapes into high-ductility cement-based materials with up to 3% tensile strain, some of which had different embedded depths. The pull-out tests of specimens were conducted by displacement-controlled loading, the stress-strain curves of pull-out for specimens were obtained, and the effects of various factors on the bonding properties between shape-memory alloy fiber and high-ductility cement-based composites were analyzed. The results showed that the knotted end could greatly improve the bond strength of shape-memory alloy fibers in the high-ductility cement matrix and provide sufficient anchoring forces for shape-memory alloy fibers to exert its superelasticity. The maximum tensile stress of all types of knotted specimens was above 900 MPa, and the maximum could reach 1 142.52 MPa. Among them, the specimen with knotted SMAF with diameter of 1.2 mm and embedded depth of 40 mm had better mechanical properties and fiber utilization ratios.
  • loading
  • [1]
    Report of the Seventh Joint Planning Meeting of NEES/E. Defense Collaborative Research on Earthquake Engineering[R].PEER 2010/109.Berkeley:UC Berkeley,2010.
    [2]
    吕西林,武大洋,周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报,2019,40(2):1-15.
    [3]
    崔迪,李宏男,宋钢兵.形状记忆合金在土木工程中的研究与应用进展[J].防灾减灾工程学报,2005(1):86-94.
    [4]
    JIA Y Q, LU Z D, LI L Z, et al. A Review of Applications and Research of Shape Memory Alloys in Civil Engineering[J]. IOP Conference Series:Materials Science and Engineering,2018,392(2):1-6.
    [5]
    LI V C. ECC-Tailored Composites Through Micromechanical Modeling[C]//Fiber Reinforced Concrete, CSCE. 1998, 64-97.
    [6]
    LI V C, WANG S, WU C. Tensile Strain-Hardening Behavior of PVA-ECC[J].ACI, Materials Journal,2001,98(6):483-492.
    [7]
    徐世烺,蔡向荣.超高韧性纤维增强水泥基复合材料基本力学性能[J].水利学报,2009, 40(9):1055-1063.
    [8]
    SULEIMAN A R, NEHDI M L. Exploring Effects of Supplementary Cementitious Materials in Concrete Exposed to Physical Salt Attack[J]. Magazine of Concrete Research, 2017,69(11):576-585. https:/doi.org/10.1680/jmacr.16.00406.
    [9]
    LI X P, LI M, SONG G B. Energy-Dissipating and Self-Repairing SMA-ECC Composite Material System[J]. Smart Materials and Structures,2015,24(2). https://doi.org/10.1088/0964-1726/24/2/025024.
    [10]
    HUNG C C, YEN W M, YU K H.Vulnerability and Improvement of Reinforced ECC Flexural Members Under Displacement Reversals:Experimental Investigation and Computational Analysis[J].Construction and Building Materials, 2016,107:287-298.
    [11]
    张庆元. 超弹性SMA/ECC加固钢筋混凝土梁受弯性能试验研究[D].郑州:郑州大学,2017.
    [12]
    钱辉,裴金召,李宗翱,等.基于SMA/ECC的新型自复位框架节点抗震性能试验研究[J].土木工程学报,2020,53(11):64-73

    ,80.
    [13]
    MOSER K, BERGAMINI A, CHRISTEN R,et al. Feasibility of Concrete Prestressed by Shape Memory Alloy Short Fibers[J]. Materials and Structures,2005,38(5).https://doi.org/10.1007/BF02479551.
    [14]
    CHOI E, CHUNG Y S, KIM D J, et al. Crack-Curing of Concrete Beams Using Cold-Drawn SMA Reinforcing Fibers[C]//ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014. https://doi.org/10.1115/SMASIS2014-7646.
    [15]
    CHOI E, KIM D J, CHUNG Y S, et al. Crack-Closing of Cement Mortar Beams Using NiTi Cold-Drawn SMA Short Fibers[J]. Smart Materials and Structures,2015,24(1).https://doi.org/10.1088/0964-1726/24/1/015018.
    [16]
    ALI M A E M, NEHDI M L. Innovative Crack-Healing Hybrid Fiber Reinforced Engineered Cementitious Composite[J]. Construction and Building Materials,2017,150.https://doi.org/10.1016/j.conbuildmat.2017.06.023.
    [17]
    ALI M A E M, SOLIMAN A M, NEHDI M L. Hybrid-Fiber Reinforced Engineered Cementitious Composite Under Tensile and Impact Loading[J]. Materials & Design,2017,11.
    [18]
    王钢, 孙明清, 刘记立, 等. SMA丝增强SHCC拉伸时的变形和裂纹自回复性能研究[J]. 硅酸盐通报, 2020,39(6):1728-1733

    ,1741.
    [19]
    LI V C. Engineered Cementitious Composites (ECC)-Material, Structural, and Durability Performance[M]. Boca Raton, Florida:CRC Press, 2008.
    [20]
    杨英姿,祝瑜,高小建,等.掺粉煤灰PVA纤维增强水泥基复合材料的试验研究[J].青岛理工大学学报,2009,30(4):51-54

    ,59.
    [21]
    汪卫. ECC优化设计及其框架节点抗震性能研究[D].南京:东南大学,2013.
    [22]
    WIEMER N, WETZEL A, SCHLEITING M, et al. Effect of Fibre Material and Fibre Roughness on the Pullout Behaviour of Metallic Micro Fibres Embedded in UHPC[J]. Materials,2020,13(14).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (51) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return