Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wu Xiaojiang, Li Zhigao. NUMERICAL SIMULATION OF A FILLED SLOPE STABILITY ON SOFT SOIL ROADBED REINFORCED BY GRAVEL PILE USING PFC2D[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(12): 76-79. doi: 10.13204/j.gyjz200812020
Citation: WANG Binglun, ZHANG Yaoting, TAO Jinyou, JIN Xing, YANG Jie. EXPERIMENTAL RESEARCH AND THEORETICAL ANALYSIS OF SHORT-TERM STIFFNESS OF FILIGREE SLABS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 67-74,99. doi: 10.13204/j.gyjzG21012704

EXPERIMENTAL RESEARCH AND THEORETICAL ANALYSIS OF SHORT-TERM STIFFNESS OF FILIGREE SLABS

doi: 10.13204/j.gyjzG21012704
  • Received Date: 2021-01-27
    Available Online: 2022-03-29
  • In the calculation of short-term stiffness of filigree slabs in composite slabs with lattice girders, the reasonable consideration of the contribution of lattice girder's stiffness to filigree slabs is directly related to the checking computations in the short-term design conditions. Three full-scale filigree slabs were designed according to Technical Specification for Precast Concsete Structceres(JGJ 1—2014), including two filigree slabs in thickness of 50 mm and one filigree slab in thickness of 60 mm, with length and width dimensions of 3 300 mm and 2 200 mm. The test and the analysis results showed that the bare top bars participated in bearing construction loads, but their role was limited. The reason was that the mechanical properties of the bare part of lattice girders were different from the part of bars embedded in slabs, which led to the larger stiffness of filigree slabs calculated by the method of equal modulus of elasticity. Based on the analysis and comparison of the test results, when the equal elastic modulus was used to calculate the total stiffness of filigree slabs, the section stiffness of the lattice girders by inverse calculations should be reduced. Then, a reduction factor of 0.6 was proposed.
  • [1]
    CHENG Y M.Optimum Design of Omnia Reinforcement Truss Concrete Plank[J].Advances in Engineering Software,1994,21(3):135-47.
    [2]
    聂建国,陈必磊,陈戈,等.钢筋混凝土叠合板的试验研究[J].工业建筑,2003,33(12):43-46

    ,33.
    [3]
    金凌志,廉德铭,李丽,等.钢筋桁架超高性能混凝土叠合板受弯性能试验研究[J].工业建筑,2020,50(3):69-75.
    [4]
    刘洋,杨思忠.混凝土叠合构件短期刚度计算方法研究[J].混凝土与水泥制品,2019(4):59-64.
    [5]
    汤磊,郭正兴,丁桂平.新型钢筋桁架混凝土叠合双向板结构性能试验研究[J].工业建筑,2013,43(11):49-53.
    [6]
    中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010.
    [7]
    American Concrete Institute.Building Code Requirements for Structural Concrete:ACI 318-14[S].Farmington Hills:ACI,2014.
    [8]
    CSA Group.Design of Concrete Structures:A23.3-14[S].Ontario:Canadian Standards Association,2014.
    [9]
    Standards Association of Australia.Australian Standard for Concrete Structures:AS 3600-2018[S].Sydney:Standard Australia Limited,2018.
    [10]
    European Committee for Standardization.Eurocode 2:Design of Concrete Structures Part 1-1:General Rules and Rules for Buildings:EN 1992-1-1:2004[S].Brussels:CEN,2004.
    [11]
    李杰,郭魏芬,陈以一,等.无支撑钢筋桁架混凝土叠合板刚度研究[J].低温建筑技术,2014,36(6):64-67.
    [12]
    周广强,张鑫,王顺,等.预应力混凝土钢管桁架叠合板施工阶段短期刚度研究[J].建筑结构,2020,50(6):21-24.
    [13]
    聂建国,姜越鑫,聂鑫,等.叠合板中桁架钢筋对预制板受力性能的影响[J].建筑结构学报,2021,42(1):151-158.
    [14]
    中华人民共和国住房和城乡建设部.装配式混凝土结构技术规程:JGJ 1-2014[S].北京:中国建筑工业出版社,2014.
    [15]
    中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152-2012[S].北京:中国建筑工业出版社,2012.
    [16]
    刘文政,崔士起,刘传卿,等.预应力混凝土钢桁架叠合板受弯性能试验与理论研究[J].建筑结构学报,2021,42(8):95-106.
    [17]
    中国工程建设标准化协会.钢筋桁架混凝土叠合板应用技术规程:T/CECS 715-2020[S].北京:中国建筑工业出版社,2020.
    [18]
    马祥林.桁架钢筋混凝土叠合板的受力性能研究[D].南京:东南大学,2017.
    [19]
    SHANE N,JAMIE G.Experimental Study of Hybrid Precast Concrete Lattice Girder Floor at Construction Stage[J].Structures,2019,20:866-885.
    [20]
    BISCHOFF P H.Reevaluation of Deflection Prediction for Concrete Beams Reinforced with Steel and Fiber Reinforced Polymer Bars[J].Journal of Structural Engineering,2005,131(5):752-767.
    [21]
    BISCHOFF P H,SCANLON A.Effective Moment of Inertia for Calculating Deflections of Concrete Members Containing Steel Reinforcement and Fiber-Reinforced Polymer Reinforcement[J].ACI Structural Journal,2007,104(1):68-75.
    [22]
    高新宇.钢筋桁架对叠合板底板抗弯性能影响的试验研究[J].工程与建设,2018,32(2):207-209.
    [23]
    于敬海,何梦杰,张波,等.预应力混凝土钢管桁架叠合底板施工阶段受弯性能研究[J].结构工程师,2020,36(6):113-122.
  • Relative Articles

    [1]ZHANG Fuhai, HUANG Zhenqing, SONG Yongping, CHEN Yu. Mesoscopic Study on Mutual-Embedded Settlement of Miscellaneous Fill Foundation Based on Particle Flows[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 187-194. doi: 10.3724/j.gyjzG22112816
    [2]ZHAO Jia, CUI Honghuan, XIE Zhishu, HU Junhui. Study on Thermal Shrinkage Characteristics of Improved Coarse-Grained Soil Fillers for High-Speed Railway Embankments in Temperature Cycles[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 198-204. doi: 10.13204/j.gyjzG22091902
    [3]YANG Hao, HUANG Liang, WU Xi, WEI Linggang. Field Vehicle Load Test and Numerical Analysis of GFRP Reinforced Sea Sand Concrete Pavement[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 200-206. doi: 10.3724/j.gyjzG23090504
    [4]WANG Jianping, AN Shao, FANG Bin. Mechanism Analysis of Strengthening the Coral Reef Sand Foundation by Dynamic Compaction Method Based on Discrete Element Theory[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 199-204. doi: 10.3724/j.gyjzG23102513
    [5]ZHANG Xueli, YANG Changhong, LI Dengfeng, YAN Xinyu. Numerical Simulations for Deformation and Failure of Layered Rock Slopes and Their Support Design by Particle Flow Code[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 173-179. doi: 10.3724/j.gyjzG23081502
    [6]WANG Shuangjie, CHEN Jianbing, JIN Long, DONG Yuanhong. Research Advances and Prospect of Scale Effect Theory of Permafrost Roadbed[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 45-53. doi: 10.13204/j.gyjzG23081216
    [12]Wu Dongxu, Yao Yong, Mei Jun, Liu Xiaoling. MICROMECHANICS SIMULATION OF DIRECT SHEAR TEST OF SANDY PEBBLE SOIL WITH DISCRETE ELEMENT METHOD[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 90-93.
    [13]Zhang Bo, Tao Lianjin, Huang Jun, Jin Liang. GRANULAR FLOW MODEL OF TRI-AXIAL TEST OF SOIL BASED ON THE MICRO IMAGE TREATMENT TECHNOLOGY[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 86-91. doi: 10.13204/j.gyjz201304018
    [14]Li Wei, Jia Shuizhong, Li Yaming, Cai Cihong, Zhou Xiaofeng. NUMERICAL SIMULATION OF MEASURES FOR CONTROLLING THE ADVERSE IMPACTS ON THE NEARBY MAIN ENTRANCE BUILDINGS IN SHANGHAI CHENSHAN BOTANICAL GARDEN CAUSED BY TALL FILL[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 16-19,29. doi: 10.13204/j.gyjz201111004
    [15]Liu Xiaomin, Jia Haiyan. COMPARISON OF THE CALCULATION METHOD FOR SETTLEMENT OF HIGHWAY BED AFTER TREATMENT BY VACUUM PRELOADING WITH SURCHARGE PRELOADING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 73-76,122. doi: 10.13204/j.gyjz200903021
    [16]Chai Hao, Zheng Gang, Yin Jinfeng. PARTICLE FLOW CODE NUMERICAL SIMULATION OF PILEWITH EXPANDED DIAMETER UNDER COMPRESSIVE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 57-60. doi: 10.13204/j.gyjz200705015
  • Cited by

    Periodical cited type(4)

    1. 苗吉军,刘远霖,刘才玮,刘延春,彭婷婷. 灌浆套筒力学性能影响因素研究进展. 科学技术与工程. 2023(03): 905-918 .
    2. 高润东,李向民,田坤,王卓琳,周南南. 装配式混凝土结构套筒锈蚀对接头受力性能的影响研究. 施工技术(中英文). 2023(03): 10-14 .
    3. 曹刚. 装配式建筑构件连接用化学灌浆材料粘聚渗透性能研究. 粘接. 2023(05): 117-121 .
    4. 许菲鹭. 套筒灌浆连接技术在预制装配式建筑工程中的运用. 住宅产业. 2021(08): 34-36+59 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502468
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.2 %其他: 15.2 %China: 3.0 %China: 3.0 %上海: 1.1 %上海: 1.1 %北京: 1.5 %北京: 1.5 %十堰: 0.4 %十堰: 0.4 %南京: 0.4 %南京: 0.4 %台州: 0.8 %台州: 0.8 %天津: 1.1 %天津: 1.1 %宿州: 0.4 %宿州: 0.4 %常德: 0.4 %常德: 0.4 %张家口: 1.9 %张家口: 1.9 %成都: 0.8 %成都: 0.8 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %格兰特县: 1.5 %格兰特县: 1.5 %深圳: 0.4 %深圳: 0.4 %湖州: 0.4 %湖州: 0.4 %漯河: 0.8 %漯河: 0.8 %芒廷维尤: 26.6 %芒廷维尤: 26.6 %芝加哥: 0.8 %芝加哥: 0.8 %衡水: 0.4 %衡水: 0.4 %西宁: 28.9 %西宁: 28.9 %西安: 0.4 %西安: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 6.1 %运城: 6.1 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.4 %郑州: 0.4 %青岛: 4.6 %青岛: 4.6 %其他China上海北京十堰南京台州天津宿州常德张家口成都晋城朝阳格兰特县深圳湖州漯河芒廷维尤芝加哥衡水西宁西安贵阳运城邯郸郑州青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(6) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return