Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
Citation: ZHU Jing, FENG Shihui, LIU Shaotong, QU Zijian, SONG Lizhuo. THERMAL PARAMETERS OF WHEAT-STRAW FIBER REINFORCED NOVEL MATERIAL MEASURED WITH HOT-WIRE METHOD[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 53-57. doi: 10.13204/j.gyjzG21012105

THERMAL PARAMETERS OF WHEAT-STRAW FIBER REINFORCED NOVEL MATERIAL MEASURED WITH HOT-WIRE METHOD

doi: 10.13204/j.gyjzG21012105
  • Received Date: 2021-01-21
    Available Online: 2021-08-19
  • The thermal parameters (thermal conductivity, thermal diffusion and specific heat capacity) of PF-AASCM were measured with hot-wire method at high temperatures (20 to 800℃). The thermal conductivity, thermal diffusion and specific heat capacity of PF-AASCM ranged from 0.8 to 3.7 W/(m·K), from 0.3 to 1.1 m2/s, and from 0.5 to 1.8 kJ/(kg·K), respectively. The thermal parameters showed a small peak at 200℃, which is indicated that a strong exothermic reaction happens. The thermal conductivity of PF-AASCM and concrete material was compared, and the analysis results showed that the thermal conductivity of PF-AASCM at 800℃ was basically the same as that of concrete. Its thermal diffusivity is higher, thermal conductivity and specific heat are relatively lower. It shows that PF-AASCM has good thermal diffusivity, but poor heat conduction and storage capacity, which indicates that PF-AASCM has heat insulation and heat storage capacity. The central temperature of the high-temperature specimen was measured, which was compared with the simulation results of finite element in the temperature field, the increase of the central temperature of the specimens is in good agreement.
  • [1]
    ZHU J, ZHENG W Z, XIE L L, et al. A High-Temperature-Resistant Inorganic Matrix for Concrete Structures Enhanced by Fiber-Reinforced Polymer[J]. Alexandria Engineering Journal, 2021,60(1):131-143.
    [2]
    朱晶, 郑文忠, 谢礼立, 等. 不同纤维增强碱矿渣胶凝材料高温后力学性能试验研究[J].工业建筑, 2019, 49(5):109-114.
    [3]
    ZHU J, ZHENG W Z, XIE L L, et al. Alkali-Activated Slag Cement:Alternative Adhesives for CFRP Sheets Bonded to Concrete at Elevated Temperatures[J]. Journal of New Materials for Electrochemical Systems, 2020,23(3):167-176.
    [4]
    张东磊.碱激发矿渣胶凝材料综述[J].四川建材,2018,44(11):45-46.
    [5]
    ZHU J, ZHENG W Z, LESLEY H S, et al. Mechanical Properties of Plant Fibers Reinforced Alkali-activated Slag Cementitious Material at High Temperature[J]. Annales de Chimie:Science des Materiaux, 2019, 43(4):240-255.
    [6]
    JIAO Z Z,WANG Y,ZHENG W Z,et al.Effect of Dosage of Sodium Carbonate on the Strength and Drying Shrinkage of Sodium Hydroxide Based Alkali-Activated Slag paste[J].Construction and Building Materials,2018, 179(10):11-24.
    [7]
    郑文忠, 朱晶. 碱矿渣胶凝材料结构工程应用基础[M].哈尔滨:哈尔滨工业大学出版社, 2015:1-12.
    [8]
    朱晶, LESLEY H S, 黄莹, 等. 不同纤维增强碱矿渣胶凝材料的配合比试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2020,44(1):97-102.
    [9]
    中国标准化委员会. 耐火材料导热系数试验方法(热线法):GB/T 5990-2006[S]. 北京:中国标准出版社, 2006:11-45.
    [10]
    郑文忠, 王睿, 王英. 活性粉末混凝土热工参数试验研究[J]. 建筑结构学报, 2014, 35(9):107-114.
    [11]
    ZUDA L,ROVNANIK P,BAYER P,et al. Thermal Properties of Alkali-Activated Slag Subjected to High Temperature[J]. Journal of Building Physics, 2007,30(4):337-350.
    [12]
    ZUDA L,CERNY R. Measurement of Linear Thermal Expansion Coefficient of Alkali-Activated Aluminosilicate Composites up to 1000℃[J]. Cement and Concrete Composites,2009, 31(4):263-267.
    [13]
    RAMANAIAH K A V, RATNA P K, HEMA C R. Thermal and Mechanical Properties of Waste Grass Broom Fiber-Reinforced Polyester Composites[J]. Materials and Design,2012, 40(1):103-108.
    [14]
    王兴肖. 植物纤维增强砌块砌体力学性能试验研究与有限元分析[D]. 武汉:武汉理工大学,2010:12-39.
    [15]
    李国忠,于衍真,司志明,等. 植物纤维增强水泥基复合材料的性能研究[J]. 硅酸盐通报, 1997(3):42-45.
    [16]
    ZHU J, ZHENG W Z, QIN C Z, et al. Effect of Different Fibers on Mechanical Properties and Ductility of Alkali-Activated Slag Cementitious Material[J]. Materials Science and Mechanical Engineering, 2017, 292:60-66.
    [17]
    GONCALVES J R A, BOLUK Y, BINDIGANAVILE V. Thermal Properties of Fibre-Reinforced Alkali-Activated Concrete in Extremetem Peratures[J]. Magazine of Concrete Research, 2018, 70(18):954-964.
    [18]
    KHALIQ W, KODUR V. Thermal and Mechanical Properties of Fiber Reinforced High Performance Self-Consolidating Concrete at Elevated Temperatures[J]. Cement and Concrete Research, 2011, 41(11):1112-1122.
    [19]
    苏有文, 李超飞, 杨婷惠,等. 稻草纤维混凝土空心砌块热工性能试验研究[J]. 混凝土, 2016(10):132-134, 138.
    [20]
    ZHU J, ZHENG W Z, XIE L L, et al. Study on the Performance of Reinforced Concrete Blocks Treated by Styrene-Acrylic Emulsion[J]. Chemical Engineering Transactions, 2018(66):85-90.
  • Relative Articles

    [1]JIN Nan, WU Yongjingbang, SHI Zhongqi, YUE Qingrui, ZHENG Zexing. Research on Methods for Detection and Localization of Color Steel Tile Buildings[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 58-64. doi: 10.3724/j.gyjzG23120810
    [2]WANG Wei, MI Qingren, XIAO Yun, YANG Xincong. Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 51-59. doi: 10.13204/j.gyjzG22112305
    [3]ZHANG Haoyu, DING Yong, LI Denghua. A Structural Surface Crack Detection Method Based on 3D Reconstruction[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 60-67. doi: 10.13204/j.gyjzG22102611
    [4]FAN Cunjun, JIN Songyan, JIN Nan, SHI Zhongqi, WU Yongjingbang, HAO Xintian. Crack Recognition and Quantitative Analysis Based on Deep Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 126-132. doi: 10.3724/j.gyjzG24061802
    [5]YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
    [6]FAN Lijun. Identification of Crack in Concrete Structures Based on MobileNetV2 of Lightweight Convolutional Network[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 231-236. doi: 10.13204/j.gyjzG23021618
    [7]LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
    [8]LI Rui, ZHANG Chun. RESEARCH ON STRUCTURAL DAMAGE DETECTION METHOD BASED ON ONE-DIMENSIONAL DILATED CONVOLUTION NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 177-183. doi: 10.13204/j.gyjzg20103011
    [9]ZHOU Yiyi, WANG Jin, LI Jiannan, JIAN Huicheng, ZHOU Qiang, HU Jiayi. STRUCTURAL LAYOUT AND SEISMIC ANALYSIS OF THE SPHERICAL EXHIBITION CENTER IN SUZHOU HIGH SPEED RAILWAY NEW CITY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 204-212. doi: 10.13204/j.gyjzG20102206
    [10]HU Weibing, YANG Jia, WANG Long, HOU Yanfang. STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 71-77,111. doi: 10.13204/j.gyjzG20020501
    [11]Guo Man-liang, Huang Chao-jie, Ling Jiang, Xiao Ming. INTRODUCTION TO PROPOSALS FOR INTERNATIONAL DESIGN COMPETITION FOR SHENZHEN UNIVERSIDE SPORTS CENTRE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 113-119,82. doi: 10.13204/j.gyjz201210024
    [12]Chen Zhihua, Weng Kai, Liu Hongbo, Yan Renzhang, Bu Yidu. THE RESEARCH STATUS AND ENGINEERING APPLICATION OF STAINLESS STEEL ON SPACE GRID STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 55-62,54. doi: 10.13204/j.gyjz2011205009
    [13]Wang Cheng Zhang Yigang Tan Zhengguang, . ANALYSIS OF LOADING PROCESS OF THE IRSSP AFFECTED BY WEB MEMBER[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 89-92. doi: 10.13204/j.gyjz200811022
    [14]Hong Jinxiang, Huang Wei, Miao Changwen. STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 47-49. doi: 10.13204/j.gyjz200407013
  • Cited by

    Periodical cited type(3)

    1. 周建. 基于长短期记忆网络的田径运动员专项体能训练即时数据采集. 兰州文理学院学报(自然科学版). 2023(03): 107-112 .
    2. 李红民,王健,闫凯. 基于多传感器数据融合的空间结构健康状态评估方法. 建筑结构学报. 2023(S1): 364-371 .
    3. 王健,李红民,闫凯. 基于突变理论的空间钢结构稳定性研究. 山东建筑大学学报. 2023(05): 33-39 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 89.2 %META: 89.2 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %其他: 0.5 %其他: 0.5 %[]: 1.0 %[]: 1.0 %临汾: 0.5 %临汾: 0.5 %北京: 10.8 %北京: 10.8 %南京: 1.5 %南京: 1.5 %台州: 0.5 %台州: 0.5 %合肥: 2.0 %合肥: 2.0 %咸阳: 0.5 %咸阳: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.0 %天津: 1.0 %宣城: 1.0 %宣城: 1.0 %常州: 1.0 %常州: 1.0 %常德: 0.5 %常德: 0.5 %开封: 0.5 %开封: 0.5 %张家口: 2.9 %张家口: 2.9 %扬州: 0.5 %扬州: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %枣庄: 0.5 %枣庄: 0.5 %济南: 1.5 %济南: 1.5 %湖州: 0.5 %湖州: 0.5 %漯河: 1.5 %漯河: 1.5 %芒廷维尤: 31.9 %芒廷维尤: 31.9 %芝加哥: 0.5 %芝加哥: 0.5 %莫斯科: 1.0 %莫斯科: 1.0 %西宁: 16.7 %西宁: 16.7 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 6.9 %运城: 6.9 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.0 %郑州: 2.0 %重庆: 0.5 %重庆: 0.5 %长沙: 1.5 %长沙: 1.5 %青岛: 1.0 %青岛: 1.0 %其他其他[]临汾北京南京台州合肥咸阳大连天津宣城常州常德开封张家口扬州晋城朝阳枣庄济南湖州漯河芒廷维尤芝加哥莫斯科西宁西安贵阳运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads(2) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return