Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHU Jing, FENG Shihui, GUO Qinghua, QU Zijian, LIU Shaotong, ZHENG Wenzhong. EXPERIMENT ON THERMAL PERFORMANCE OF WALL MADE OF ALKALI-ACTIVATED SLAG CEMENTITIOUS MATERIAL MIXED WITH WHEAT-STRAW PLANT FIBER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 58-62,180. doi: 10.13204/j.gyjzG21010708
Citation: ZHU Jing, FENG Shihui, GUO Qinghua, QU Zijian, LIU Shaotong, ZHENG Wenzhong. EXPERIMENT ON THERMAL PERFORMANCE OF WALL MADE OF ALKALI-ACTIVATED SLAG CEMENTITIOUS MATERIAL MIXED WITH WHEAT-STRAW PLANT FIBER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 58-62,180. doi: 10.13204/j.gyjzG21010708

EXPERIMENT ON THERMAL PERFORMANCE OF WALL MADE OF ALKALI-ACTIVATED SLAG CEMENTITIOUS MATERIAL MIXED WITH WHEAT-STRAW PLANT FIBER

doi: 10.13204/j.gyjzG21010708
  • Received Date: 2021-01-07
    Available Online: 2021-08-19
  • The thermal parameters of the wall made of plant fiber-reinforced alkali-activated slag cementitious material were measured through the cold and hot box heat flow meter method. The wall size was selected with 780 mm×950 mm×190 mm, and the thermocouples and heat flow meters were used to measure the temperature and heat flow on both sides of the wall. Then, the thermal resistance 0.408 m2·K/W and heat transfer coefficient 1.792 W/(m2·K) of the wall were measured by the dynamic method and the static method, respectively. Finally, The thermal conductivity of the wall was calculated as 0.136 W/(m·K). Compared with the air thermal conductivity of 0.84 W/(m·K) and the thermal conductivity of concrete wall of 1.74 W/(m·K), the thermal conductivity of plant fiber-reinforced alkali-activated slag cementitious material was lower, which could prove that the fiber-reinforced alkali-activated slag cementitious material had good thermal insulation performance.
  • [1]
    KIM T W, JUN Y B. The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Using Hard-Burned MgO[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2015,19(3):39-47.
    [2]
    朱晶,郑文忠,谢礼立,等.不同纤维增强碱矿渣胶凝材料高温后力学性能试验研究[J].工业建筑, 2019,49(5):109-114.
    [3]
    PIMRAKSA K,CHINDAPRASIRT P,RUNGCHET A,et al. Lightweight Geopolymer Made of Highly Porous Siliceous Materials with Various Na2O/Al2O3 and SiO2/Al2O3 Ratios[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2011,528(21):6616-6623.
    [4]
    ZHU J, ZHENG W Z, XIE L L, et al. A High-Temperature-Resistant Inorganic Matrix for Concrete Structures Enhanced by Fiber-Reinforced Polymer[J]. Alexandria Engineering Journal, 2021,60(1):131-143.
    [5]
    FERNANDEZ-JIMENEZ A,PUERTAS F. Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag:Influence of the Type of Alkaline Activator[J]. The Journal of American Ceramic Society,2003,33(1):2031-2036.
    [6]
    JIAO Z Z,WANG Y,ZHENG W Z,et al.Effect of Dosage of Sodium Carbonate on the Strength and Drying Shrinkage of Sodium Hydroxide Based Alkali-Activated Slag Paste[J]. Construction and Building Materials,2018,179(10):11-24.
    [7]
    程可佳.碱矿渣陶粒混凝土的自收缩及抗裂性能研究[D].福州:福州大学,2016:21-43.
    [8]
    郑文忠, 朱晶. 碱矿渣胶凝材料结构工程应用基础[M].哈尔滨:哈尔滨工业大学出版社, 2015:1-12.
    [9]
    吴中伟. 纤维增强水泥基材料的未来[J]. 混凝土与水泥制品, 1999(1):5-6.
    [10]
    ZHU J, ZHENG W Z, XIE L L, et al. Alkali-Activated Slag Cement:Alternative Adhesives for CFRP Sheets Bonded to Concrete at Elevated Temperatures[J].Journal of New Materials for Electrochemical Systems, 2020,23(3):167-176.
    [11]
    黄丽媛. 植物纤维增强水泥基复合材料的研究[D].重庆:西南大学,2019:8-23.
    [12]
    ZHU J, ZHENG W Z, LESLEY H S, et al. Mechanical Properties of Plant Fibers Reinforced Alkali-Activated Slag Cementitious Material at High Temperature[J]. Annales de Chimie:Science des Materiaux, 2019, 43(4):240-255.
    [13]
    李保德, 王兴肖, 娄霓. 植物纤维增强砌块砌体轴心受压试验研究与有限元分析[J]. 建筑结构, 2011, 41(8):129-133

    ,109.
    [14]
    国家住房与居住环境工程技术研究中心.植物纤维石膏渣空心砌块应用技术规程:CECS 201:2006[S].北京:中国计划出版社,2006.
    [15]
    中国建筑设计研究院.植物纤维工业灰渣混凝土砌块建筑技术规程:JGJ/T 228-2010[S].北京:中国建筑工业出版社,2011.
    [16]
    KHALIQ W, KODUR V. Thermal and Mechanical Properties of Fiber Reinforced High Performance Self-Consolidating Concrete at Elevated Temperatures[J]. Cement and Concrete Research, 2011, 41(11):1112-1122.
    [17]
    PHATTHARACHAI M, TEEWARA S W, PEERAPONG J, et al. Hemp Fiber Reinforced Geopolymer Composites:Effects of NaoH Concentration on Fiber Pre-Treatment Process[J]. Key Engineering Materials, 2020, 841(1):166-170.
    [18]
    王兴肖. 植物纤维增强砌块墙体力学性能试验研究与有限元分析[D]. 武汉:武汉理工大学, 2010:12-39.
    [19]
    郑文忠, 王睿, 王英. 活性粉末混凝土热工参数试验研究[J]. 建筑结构学报, 2014, 35(9):107-114.
    [20]
    柳孝图. 建筑物理[M]. 3版.北京:中国建筑工业出版社2010:37-60.
    [21]
    中国建筑科学研究院.采暖居住建筑节能检验标准:JGJ 132-2001[S].北京:中国建筑工业出版社,2001.
    [22]
    中华人民共和国住房和城乡建设部.民用建筑热工设计规范:GB 50176-2016[S].北京:中国建筑工业出版社,2016.
  • Relative Articles

    [1]ZHU Jing, XIAN Wenliang, WANG Ruixuan, WEN Zijie, XU Qinghai, TIAN Mingyang, CHEN Jiayao. Research on Mechanical and Thermal Properties of Fiber-Reinforced Alkali Slag Cementitious Sandwich Panels[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 114-120. doi: 10.3724/j.gyjzG23070418
    [2]GONG Chao, HOU Zhaoxin, LIANG Zihao, WU Zhaoqi, LIANG Weiqiao, FANG Wujun. Experimental Research on Mechanical and Thermal Properties of Four Insulating Materials for Heat Bridge Effect[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 66-71,165. doi: 10.13204/j.gyjzG21030909
    [3]ZHU Jing, FENG Shihui, LIANG Siqi, LIU Shaotong, GUO Qinghua, HUANG Wenxuan. EXPERIMENTAL RESEARCH ON COMPRESSIVE PERFORMANCES OF MASONRY AFTER BEIING SUBJECTED TO HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 170-176. doi: 10.13204/j.gyjzG21011111
    [4]LI Shunqun, WU Qiong, ZHANG Fan, LI Lijun. INFLUENCES OF THE WATER CONTENT ON SOIL THERMAL CONDUCTIVITY COEFFICIENTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 177-180. doi: 10.13204/j.gyjzG20070106
    [5]ZHU Jing, FENG Shihui, LIU Shaotong, QU Zijian, SONG Lizhuo. THERMAL PARAMETERS OF WHEAT-STRAW FIBER REINFORCED NOVEL MATERIAL MEASURED WITH HOT-WIRE METHOD[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 53-57. doi: 10.13204/j.gyjzG21012105
    [6]LI Hongxian, LIU Dianzhong, WU Siying. BEARING CHARACTERISTIC RESEARCH OF COMPOSITE FOAM-CONCRETE WALLS REINFORCED WITH COLD-FORMED THIN-WALL SECTION STEEL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 160-169. doi: 10.13204/j.gyjzG20020406
    [7]ZHU Xinrong, QIU Yang, YANG Wen, YANG Xuan, LIU Jiaping. FIELD TESTING OF HEAT FLUX AND HEAT EXCHANGE COEFFICIENTS ON BUILDING EXTERIOR SURFACE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(7): 83-87,150. doi: 10.13204/j.gyjzG19113009
    [13]Liu Bin, Hao Jiping, Zhao Linwei, Li Kelong, Zhong Weihui, Zhao Qiuli. EXPERIMENTAL RESEARCH ON AXIAL COMPRESSION BEHAVIOR OF NEW-TYPE OF COLD-FORMED THIN-WALL STEEL FRAMING WALL STUDS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 113-117. doi: 10.13204/j.gyjz201402025
    [14]Yang Jianhui, Chen Jing, Zhang Peng, Qin Bendong, Zhao Hongbing. EXPERIMENTAL STUDY ON HIGH-PERFORMANCE SHALE CERAMSITE CONCRETE BASED ON INSULATION STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 102-108. doi: 10.13204/j.gyjz2001412016
    [15]Hu Weixin, Huang Wei, Qin Honggen. EFFECT OF DIATOMITE,ULTRAFINE RICE HUSK ASH,AND SILICON ASH ON THE PERFORMANCE OF DUAL POROUS CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 113-116. doi: 10.13204/j.gyjz201410023
    [16]Guo Peng, He Baokang, Shen Shungao. STUDY ON THE SHEAR PERFORMANCE OF COLD-FORMED STEEL FRAMING WALLS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 49-54,61. doi: 10.13204/j.gyjz200909009
    [17]Dong Hairong, Qi Shaoming, Sun Xiaolu, Wu Xin. STUDY ON TECHNOLOGY OF ENERGY-SAVING RECONSTRUCTION ON EXISTING RESIDENTIAL BUILDINGS IN THE COLD DISTRICT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 4-6. doi: 10.13204/j.gyjz200907002
    [18]Ma Qing. MOULDING DESIGN OF BIG DIAMETERD WELDED STEEL PIPE WORKSHOP OF BAO STEEL[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 48-50. doi: 10.13204/j.gyjz200809015
  • Cited by

    Periodical cited type(4)

    1. 朱晶,咸玟良,王睿轩,文梓杰,徐庆海,田洺阳,陈佳瑶. 纤维增强碱矿渣胶凝材料夹芯板的力学及热工性能研究. 工业建筑. 2024(12): 114-120 . 本站查看
    2. 周莉,周星中. 植物纤维混凝土的研究现状与发展前景. 合成材料老化与应用. 2023(01): 129-131 .
    3. 张新荔,张佳宇,李振洋. 植物纤维增强地质聚合物研究进展. 化工新型材料. 2023(02): 46-51 .
    4. 孙琪. 典型既有住宅低能耗改造及热工性能试验研究. 新型建筑材料. 2023(03): 108-111+155 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.0 %FULLTEXT: 7.0 %META: 92.4 %META: 92.4 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (145) PDF downloads(1) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return