Citation: | OUYANG Lijun, QIAN Peng, GAO Wanyang, DING Bin, WANG Qing. EFFECT OF CURING SYSTEM ON RESIDUAL MECHANICAL PROPERTIES OF ULTRA-HIGH PERFORMANCE CONCRETE EXPOSED TO ELEVATED TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 92-100. doi: 10.13204/j.gyjzG201905290010 |
LI Y E, GUO L, RAJLIC B, et al. Hodder Avenue Underpass:An Innovative Bridge Solution with Ultra-High Performance Fibre-Reinforced Concrete[J]. Key Eng Mater, 2015, 629/630:37-42.
|
JIA L J, HUI H B, YU Q H, et al. The Application and Development of Ultra-High-Performance Concrete in Bridge Engineering[J]. Adv Mater Res, 2014, 859(5):238-242.
|
王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1):141-149.
|
王铮. 混凝土高温后力学性能的试验研究[D]. 大连:大连理工大学, 2010.
|
欧阳利军, 许峰, 高皖扬,等. 玄武岩纤维布约束高温损伤混凝土方柱轴压力学性能试验研究[J]. 复合材料学报, 2019,36(2):469-481.
|
TAI Y S, PAN H H, KUNG Y N. Mechanical Properties of Steel Fiber Reinforced Reactive Powder Concrete Following Exposure to High Temperature Reaching 800℃[J]. Nucl Eng Des, 2011, 241(7):2416-2424.
|
朋改非, 杨娟, 石云兴. 超高性能混凝土高温后残余力学性能试验研究[J]. 土木工程学报, 2017(4):73-79.
|
KANG S H, HONG S G, MOON J. Importance of Drying to Control Internal Curing Effects on Field Casting Ultra-High Performance Concrete[J]. Cem Concr Res, 2018, 108:20-30.
|
KODUR V K R, BHATT P P, SOROUSHIAN P, et al. Temperature and Stress Development in Ultra-High Performance Concrete During Curing[J]. Constr Build Mater, 2016, 122:63-71.
|
CANBAZ M. The Effect of High Temperature on Reactive Powder Concrete[J]. Constr Build Mater, 2014, 70(15):508-513.
|
张胜, 周锡玲, 谢友均,等. 养护制度对活性粉未混凝土强度及微观结构影响的研究[J]. 混凝土, 2007(6):16-18.
|
HIREMATH P, YARAGAL S C. Investigation on Mechanical Properties of Reactive Powder Concrete Under Different Curing Regimes[J]. Mater Today Pro, 2017, 4(4):9758-9762.
|
MOSTOFINEJAD D, NIKOO M R, HOSSEINI S A. Determination of Optimized Mix Design and Curing Conditions of Reactive Powder Concrete (RPC)[J]. Constr Build Mater, 2016, 123:754-767.
|
ALLENA S, NEWTSON C M. Ultra-High Strength Concrete Mixtures Using Local Materials[J]. J Civ Arch, 2011, 5(4):322-330.
|
牛旭婧, 朋改非, 尚亚杰,等. 热水-干热组合养护对超高性能混凝土力学性能的影响[J]. 硅酸盐学报, 2018,46(8):1141-1146.
|
李海艳. 活性粉末混凝土高温爆裂及高温后力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
|
杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940.
|
FU Y F, WONG Y L, POON C S, et al. Literature Review of Study on Mechanism of Explosive Spalling in Concrete at Elevated Temperatures[J]. J Build Mater, 2006, 9(3):323-329.
|
杨娟, 朋改非. 钢纤维类型对超高性能混凝土高温爆裂性能的影响[J]. 复合材料学报, 2018,35(6):1599-1608.
|
MISSEMER L, OUEDRAOGO E, MALECOT Y, et al. Fire Spalling of Ultra-High Performance Concrete:From a Global Analysis to Microstructure Investigations[J]. Cem Concr Res, 2019, 115:207-219.
|
ZDEB T. An Analysis of the Steam Curing and Autoclaving Process Parameters for Reactive Powder Concretes[J]. Constr Build Mater, 2017, 131:758-766.
|
LIU J H, SONG S. Effects of Curing Systems on Properties of High Volume Fine Mineral Powder RPC and Appearance of Hydrates[J]. J Wuhan Univ Technol, 2010, 25(4):619-623.
|
YAZICI H, DENIZ E, BARADAN B. The Effect of Autoclave Pressure, Temperature and Duration Time on Mechanical Properties of Reactive Powder Concrete[J]. Constr Build Mater, 2013, 42(9):53-63.
|
PENG G F, HUANG Z S. Change in Microstructure of Hardened Cement Paste Subjected to Elevated Temperatures[J]. Constr Build Mater, 2008, 22(4):593-599.
|
SANCHAYAN S, FOSTER S J. High Temperature Behaviour of Hybrid Steel-PVA Fibre Reinforced Reactive Powder Concrete[J]. Mater Struct, 2016, 49(3):769-782.
|
YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of Aggregate and Curing Regime on the Mechanical Properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)[J]. Constr Build Mater, 2009, 23(6):2291-2298.
|
BACH T T H, COUMES C C D, POCHARD I, et al. Influence of Temperature on the Hydration Products of Low pH Cements[J]. Cem Concr Res, 2012, 42(6):805-817.
|
WANG D, SHI C, WU Z, et al. A Review on Ultra High Performance Concrete:Part Ⅱ. Hydration, Microstructure and Properties[J]. Constr Build Mater, 2015, 96:368-377.
|
SARWAR M A. Characterizing Temperature Induced Strength Degradation and Explosive Spalling in Ultra High Performance Concrete[M]. East Lansing:Michigan State University, 2017.
|
WANG D, SHI C, WU Z, et al. A Review on Ultra High Performance Concrete:Part Ⅱ. Hydration, Microstructure and Properties[J]. Constr Build Mater, 2015, 96:368-377.
|
JU Y, WANG L, LIU H, et al. An Experimental Investigation of the Thermal Spalling of Polypropylene-Fibered Reactive Powder Concrete Exposed to Elevated Temperatures[J]. Sci Bull, 2015, 60(23):2022-2053.
|
RASHAD A M, BAI Y, BASHEER P A M, et al. Chemical and Mechanical Stability of Sodium Sulfate Activated Slag After Exposure to Elevated Temperature[J]. Cem Concr Res, 2012, 42(2):333-343.
|
RASHAD A M, ZEEDAN S R. A Preliminary Study of Blended Pastes of Cement and Quartz Powder Under the Effect of Elevated Temperature[J]. Constr Build Mater, 2012, 29(4):672-681.
|
ABID M, HOU X, ZHENG W, et al. High Temperature and Residual Properties of Reactive Powder Concrete-A Review[J]. Constr Build Mater, 2017, 147:339-351.
|
陆洲导, 林晨旭, 余江滔,等. 可用于无钢筋建造的超强超韧水泥基复合材料[J]. 同济大学学报(自然科学版), 2017, 45(6):880-884.
|
邓宗才, 肖锐, 申臣良. 超高性能混凝土的制备与性能[J]. 材料导报, 2013, 27(9):66-95.
|
史才军, 何稳, 吴泽媚,等. 纤维对UHPC力学性能的影响研究进展[J]. 硅酸盐通报, 2015, 34(8):2227-2236.
|
刘红彬. 活性粉末混凝土的高温力学性能与爆裂的试验研究[D]. 北京:中国矿业大学, 2012.
|
鞠杨,刘红彬,孙华飞. 活性粉末混凝土的制备与物理力学性能[M]. 北京:科学出版社, 2017.
|
TAI Y S, EL-TAWIL S, CHUNG T H. Performance of Deformed Steel Fibers Embedded in Ultra-High Performance Concrete Subjected to Various Pullout Rates[J]. Cem Concr Res, 2016, 89:1-13.
|
PYO S, EL-TAWIL S. Crack Velocity-Dependent Dynamic Tensile Behavior of Concrete[J]. Int J Impact Eng, 2013, 55(5):63-70.
|
ANSON M, PENG G F, CHAN S Y N. Chemical Kinetics of CSH Decomposition in Hardened Cement Paste Subjected to Elevated Temperatures up to 800℃[J]. Adv Cem Res, 2001, 13(2):47-52.
|