Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LUO Minmin, CHEN Yun, ZHOU Jiang. RESEARCH STATUS AND PROSPECT OF PARAMETER SELECTION FOR THE HS-SMALL MODEL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 172-180. doi: 10.13204/j.gyjzG20123002
Citation: LUO Minmin, CHEN Yun, ZHOU Jiang. RESEARCH STATUS AND PROSPECT OF PARAMETER SELECTION FOR THE HS-SMALL MODEL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 172-180. doi: 10.13204/j.gyjzG20123002

RESEARCH STATUS AND PROSPECT OF PARAMETER SELECTION FOR THE HS-SMALL MODEL

doi: 10.13204/j.gyjzG20123002
  • Received Date: 2020-12-30
    Available Online: 2021-08-19
  • The HS-Small model (the HSS model) was proposed based on the hardening soil model (the HS model) considering the small strain characteristics of soils, which is more accurate in simulating and predicting the deformation of underground engineerings and can meet the strict deformation control requirements, the numerical analysis results by the HSS model agree well with the measured data. Therefore, more and more numerical analysis of underground engineerings have adopted the HSS model. However, the HSS model has many parameters, and it is difficult and inconvenient to obtain the parameter values. Conventional geological survey reports hardly provide the relevant parameter values of the HSS model, and some high-precision, long-period indoor tests need to be conducted to measure them. Therefore, it is necessary and meaningful to summarize the research status of parameter selection for the HSS model, which can provide engineering experiences and reference to subsequent projects. On the basis of research on a large number of documents at home and abroad, the calculating methods for parameters of the HSS model and the recommended values were summarized.On the other hand, some deficiencies in existing research results were pointed out,which could provide some reference to further research.
  • [1]
    汪中卫, 王海飙, 戚科骏, 等. 土体小应变试验研究综述与评价[J]. 岩土力学, 2007, 28(7):1518-1524.
    [2]
    王海波, 徐明, 宋二祥. 基于硬化土模型的小应变本构模型研究[J]. 岩土力学, 2011, 32(1):39-43.
    [3]
    管飞. 基于HSS本构模型的软土超大型深基坑3D数值分析[J]. 岩土工程学报, 2010, 32(增刊1):177-180.
    [4]
    JARDINE R J, POTTS D M, FOURIE A B, et al. Studies of the Influence of Nonlinear Stress-Strain Characteristics in Soil-Structure Interaction[J]. Geotechnique, 1986, 36:377-396.
    [5]
    SCHANZ T, VERMEER P A. On the Stiffness of Sands[J].Géotechnique,1998,48:383-387.
    [6]
    SCHANZ T, VERMEER P, BONNIER P. The Hardening Soil Model:Formulation and Verification[C]//Proceedings of 1st International PLAXIS Symposium on Beyond 2000 in Computational Geotechnics. 1999:281-296.
    [7]
    DUNCAN J M, CHANG C. Nonlinear Analysis of Stress and Strain in Soils[J] Journal of the Soil Mechanics and Foundations Division,1970,96:1629-1653.
    [8]
    BENZ T. Small Strain Stiffness of Soils and Its Numerical Consequences[D]. Stuttgart:University of Stuttgart, 2006.
    [9]
    尹骥. 小应变硬化土模型在上海地区深基坑工程中的应用[J]. 岩土工程学报, 2010, 32(增刊1):166-172.
    [10]
    王卫东, 王浩然, 徐中华. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34(6):1766-1774.
    [11]
    褚峰, 李永盛, 梁发云, 等. 土体小应变条件下紧邻地铁枢纽的超深基坑变形特性数值分析[J]. 岩石力学与工程学报, 2010, 29(增刊1):3184-3192.
    [12]
    邵羽, 江杰, 陈俊羽, 等. 基于HSS模型与MCC模型的深基坑降水开挖变形分析[J]. 水利学报, 2015, 46(增刊1):231-235.
    [13]
    龚东庆, 郑渊仁. 硬化土体模型分析基坑挡土壁与地盘变形的评估[J]. 岩土工程学报, 2010, 32(增刊2):175-178.
    [14]
    李向约, 胡中雄. 不同排水条件下上海黏土应力-应变曲线的关系[J]. 工程勘察, 1987(2):1-5.
    [15]
    BOLTON M D. The Strength and Dilatancy of Sands[J]. Geotechnique, 1986, 36(1):65-78.
    [16]
    BRINKGREVE R B J, BROERE W. PLAXIS Material Models Manual[M]. Delft:PLAXIS B V, 2006.
    [17]
    董建国, 赵锡宏. 上海四参数非线性加载地基模型[J]. 工程勘察, 1990(2):12-15.
    [18]
    刘志祥, 张海清. PLAXIS高级应用教程[M]. 北京:机械工业出版社, 2015.
    [19]
    王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海:同济大学, 2012.
    [20]
    周恩平. 考虑小应变的硬化土本构模型在基坑变形分析中的应用[D]. 哈尔滨:哈尔滨工业大学, 2010.
    [21]
    王卫东, 王浩然, 徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33(8):2283-2290.
    [22]
    梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2):269-278.
    [23]
    宗露丹, 徐中华, 翁其平, 等. 小应变本构模型在超深大基坑分析中的应用[J]. 地下空间与工程学报, 2019, 15(增刊1):231-242.
    [24]
    陈尚荣, 李通达, 梁发云, 等. 上海临港砂质粉土硬化土小应变模型参数研究[J]. 同济大学学报(自然科学版), 2020, 48(6):841-846.
    [25]
    顾晓强, 陆路通, 李雄威, 等. 土体小应变刚度特性的试验研究[J]. 同济大学学报(自然科学版), 2018, 46(3):312-317.
    [26]
    林乔宇. 厦门花岗岩残积土HSS模型参数的研究及工程应用[D]. 泉州:华侨大学, 2019.
    [27]
    牛浩. 考虑小应变刚度的花岗岩残积土力学试验研究及工程应用[D]. 泉州:华侨大学, 2017.
    [28]
    叶跃鸿. 地下通道施工引起下卧地铁隧道上浮规律及控制措施研究[D]. 杭州:浙江大学, 2017.
    [29]
    SURARAK C, LIKITLERSUANG S, WANATOWSKI D, et al. Stiffness and Strength Parameters for Hardening Soil Model of Soft and Stiff Bangkok Clays[J]. Soils and Foundations, 2012, 52(4):682-697.
    [30]
    林乔宇. 厦门花岗岩残积土HSS模型参数的研究及工程应用[D]. 泉州:华侨大学, 2019.
    [31]
    李亚玲, 张彬, 苏海峰, 等. Hardening-Soil模型中参数选取试验研究[J]. 工程地质学报, 2012, 20(增刊1):164-169.
    [32]
    HUANG X, SCHWEIGER H F, HUANG H. Influence of Deep Excavations on Nearby Existing Tunnels[J]. International Journal of Geomechanics, 2013, 13(2):170-180.
    [33]
    谢东武, 管飞, 丁文其. 小应变硬化土模型参数的确定与敏感性分析[J]. 地震工程学报, 2017, 39(5):898-906.
    [34]
    刘畅. 考虑土体不同强度与变形参数及基坑支护空间影响的基坑支护变形与内力研究[D]. 天津:天津大学, 2008.
    [35]
    陈峰. 无锡地铁基坑典型地层本构模型适应性研究[D]. 上海:同济大学, 2011.
    [36]
    叶跃鸿. 地下通道施工引起下卧地铁隧道上浮规律及控制措施研究[D]. 杭州:浙江大学, 2017.
    [37]
    陆瑶. 基于HSS模型的盾构隧道施工对邻近桥梁的影响及控制措施研究[D]. 济南:济南大学, 2018.
    [38]
    司马军, 马旭, 潘健. 武汉老黏性土小应变硬化模型参数的试验研究[J]. 水利与建筑工程学报, 2018, 16(3):93-97.
    [39]
    NG C W W. An Evaluation of Soil-Structure Interaction Associated with a Multi-Propped Excavation[D]. Bristol:University of Bristol, 1992.
    [40]
    OU C Y, SHIAU B Y, WANG I W. Three-Dimensional Deformation Behavior of the Taipei National Enterprise Center (TNEC) Excavation Case History[J]. Canadian Geotechnical Journal, 2000, 37(2):438-448.
    [41]
    ROBOSKI J F. Soil Parameters for Constitutive Models of Compressible Chicago Glacial Clays[D]. Evanston:Northwestern University, 2001.
    [42]
    LVFTENEGGER R, SCHWEIGER H F, SCHARINGERF. 3D Finite Element Analysis of a Deep Excavation and Comparison with in Situ Measurements[M]. London:Taylor & Francis Group, 2009:193-199.
    [43]
    LAWLER M L, FARRELL E R, LOCHADEN A L E. Comparison of the Measured and Finite Element-Predicted Ground Deformations of a Stiff Lodgement Till[J]. Canadian Geotechnical Journal, 2011, 48(1):98-116.
    [44]
    BRINKGREVE R B J. Selection of Soil Models and Parameters for Geotechnical Engineering Application[C]//Geo-Frontiers Congress. 2005.
    [45]
    李连祥, 刘嘉典, 李克金, 等. 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 2019, 40(10):4021-4029.
    [46]
    张柱刚. 基于HS-Small本构的深基坑开挖-降水过程数值分析及群锚效应研究[D]. 银川:宁夏大学, 2019.
    [47]
    CALVELLO M, FINNO R J. Selecting Parameters to Optimize in Model Calibration by Inverse Analysis[J]. Computers & Geotechnics, 2004, 31(5):411-425.
    [48]
    VERMEER P A, NEHER H P. A Soft Soil Model that Accounts for Creep[C]//Beyond 2000 in Computational Geotechnics. 1999.
    [49]
    JÁKY J. A Nyugalmi Nyomás Tényez je[J]. A Magyar Mérn kés Építész-Egylet K zl nyének, 1944,78(22):355-358.
    [50]
    李友洪, 顾晓强, 梁发云. K0应力条件下砂土小应变剪切模量研究[J]. 长江科学院院报, 2018, 35(11):154-158.
    [51]
    刘麟, 顾晓强, 黄茂松. 利用带弯曲元应力路径三轴仪量测静止土压力系数研究[J]. 岩土工程学报, 2017, 39(增刊2):212-215.
    [52]
    BROOKER E W, IRELAND H O. Earth Pressures at Rest Related to Stress History[J]. Canadian Geotechnical Journal, 1965, 2(1):1-15.
    [53]
    ABDELHAMID M S, KRIZEK R J. At Rest Lateral Earth Pressure of Consolidating Clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1976, 102(7):721-738.
    [54]
    FEDERICO A, ELIA G, GERMANO V. A Short Note on the Earth Pressure and Mobilized Angle of Internal Friction in One-Dimensional Compression of Soils[J]. Journal of Geotechnical Engineering, 2008, 3(1):41-46.
    [55]
    SIMPSON B. Retaining Structures:Displacement and Design[J]. Geotechnique, 1992, 42(4):541-576.
    [56]
    BOLTON M D. Geotechnical Stress Analysis for Bridge Abutment Design[R]. Wokingham,UK:Transport and Road Research Laboratory, 1991.
    [57]
    ALPAN I. The Empirical Evaluation of the Coefficients K0 and K0R[J]. Soils and Foundations, 1967, 7(1):31-40.
    [58]
    ZHAO X D, ZHOU G Q, TIAN Q H, et al. Coefficient of Earth Pressure at Rest for Normal Consolidated Soils[J]. Mining Science and Technology, 2010, 20(3):406-410.
    [59]
    JANBU J. Soil Compressibility as Determined by Oedometer and Triaxial Tests[C]//Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering. 1963.
    [60]
    董学超, 王水林, 郭明伟, 等. 基于压缩试验曲线的HSS模型参数优化[J]. 岩土力学, 2020, 41(增刊2). DOI: 10.16285/j.rsm.2020.

    0015.
    [61]
    徐中华, 王建华, 王卫东. 主体地下结构与支护结构相结合的复杂深基坑分析[J]. 岩土工程学报, 2006, 28(增刊):1355-1359.
    [62]
    张娇, 张雁, 李青, 等. 上海黏性土的初始剪切模量试验研究[J]. 地下空间与工程学报, 2017, 13(2):337-343.
    [63]
    陈少杰, 顾晓强, 高广运. 土体小应变剪切模量的现场和室内试验对比及工程应用[J]. 岩土工程学报, 2019, 41(增刊2):133-136.
    [64]
    HARDIN B O, DRNEVICH V P. Shear Modulus and Damping in Soils[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7):667-692.
    [65]
    HARDIN B O. Vibration Modulus of Normally Consolidated Clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(2):353-370.
    [66]
    HARDIN B O, BLACK W L. Closure to Vibration Modulus of Normally Consolidated Clays[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(6):1531-1537.
    [67]
    SEED H B, IDRISS I M. SOIL Moduli and Damping Factors for Dynamic Response Analysis[R]. Berkeley:University of California, 1970.
    [68]
    VUCETIC M, DOBRY R. Effect of Soil Plasticity on Cyclic Response[J]. Journal of Geotechnical Engineering, 1991, 117(1). http://doi.org/10.1061/(ASCE)0733-9410(1991)117:(89).
    [69]
    STOKOE K H, DARENDELI M B, GILBERT R B, et al. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[C]//International Workshop on Uncertainties in Nonlinear Soil Properties and Their Impact on Modeling Dynamic Soil Response. 2004.
  • Relative Articles

    [1]CHEN Zhijun, ZHU Chen, PAN Xiaodong, PAN Kun. Experimental Study on Parameters of the HSS Model for Taizhou Soft Clay[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 186-193. doi: 10.3724/j.gyjzG23071904
    [2]ZHANG Beibei, WU Tingliang, WANG Yusong, JIN Mingchao. Stability Analysis on Foundation Treatment for a Transverse Karst Cave in Guiyang[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 133-139. doi: 10.13204/j.gyjzG21032405
    [3]XIAO Jie, TAN Yuefeng, TONG Chao, YANG Heping, CHANG Jin, ZOU Weilie, CHEN Guanyi. Numerical Analysis for Shallow Landslides of Expansive Soil Slopes Based on Three Fields Coupling[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 128-136,118. doi: 10.13204/j.gyjzg21070206
    [4]BAI Zhengxian, CUI Hu, JIANG Ziqin, SHEN Cunjie, SU Lei, ZHANG Wenying. Influence of Different Parameters on Hysteretic Behavior of Corrugated Steel Plate Wall[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 24-31,103. doi: 10.13204/j.gyjzG21122105
    [5]LI Gang, ZHAO Wenbo. STUDY ON DYNAMIC CHARACTERISTICS OF NEW TYPES OF ASEISMIC SUPPORTS IN UTILITY TUNNELS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 71-77,176. doi: 10.13204/j.gyjzG20071312
    [6]YU Haifeng, HAO Mengtian, MA Jiansuo, YU Ke. QUASI-STATIC TEST AND NUMERICAL ANALYSIS OF PREFABRICATED SHEAR WALL WITH VERTICAL CONNECTIONS OF EMBEDDED STEEL PLATE AND BOLT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 24-30. doi: 10.13204/j.gyjz202005005
    [7]Mei Yuan Hu Changming Wei Yifeng Zhao Nan Liu Dajiang Yuan Yili, . CENTRIFUGAL TEST AND STABILITY ANALYSIS OF A HIGH-FILLED COLLAPSIBLE LOESS SLOPE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 93-97. doi: 10.13204/j.gyjz201506019
    [8]Chen Jingjing, Ru Zhongliang, Wei Zushuai. NUMERICAL MODELING OF HYDRAULIC FRACTURE BASED ON PORE PRESSURE COHESIVE CRACK[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 103-106. doi: 10.13204/j.gyjz201504019
    [9]Guo Hongchao, Zhong Xuan. MECHANICAL BEHAVIOR NUMERICAL ANALYSIS OF Q460 EQUAL LEG ANGLE BASED ON THE TRANSMISSION TOWER STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 162-166. doi: 10.13204/j.gyjz201312030
    [10]Li Yongjing, Zhang Jing, Zhang Xu. THE VIBRATION CONTROL EFFECT ANALYSIS OF TORSION COUPLING RESPONSE OF ECCENTRIC STRUCTURES WITH THE VISCOUS DAMPERS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 68-72. doi: 10.13204/j.gyjz201305015
    [11]Huang Junjie, Su Qian, Zhou Heng, Zheng Jianbin. REINFORCEMENT DESIGN OF THE DISEASE PILE FOUNDATION OF EXISTING BRIDGE IN KARST AREA AND NUMERICAL ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 166-170. doi: 10.13204/j.gyjz201207029
    [12]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [13]Zhou Luping, Hang Yongshan. APPLICATION AND ANALYSIS OF INDUCING JOINT IN CHANGZHOU UNDERGROUND PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 100-103. doi: 10.13204/j.gyjz201111022
    [14]Zhang Huile, Liu Jianguo, Zhang Huidong, Guo Dongmei, Zhao Yanfei. FINITE ELEMENT ANALYSIS OF BEARING CAPACITY AND FAILURE MECHANISM OF HORIZONTAL JET GROUTING ARCH[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(9): 66-69,104. doi: 10.13204/j.gyjz201009017
    [15]Qin Jianjian, Che Jialing, Dong Pan, Wang Jing, Zhang Jun. STABILITY ANALYSIS OF COUPLER STEEL TUBE FALSEWORK UNDER DOUBLE-DIRECTION LOAD[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 47-50,54. doi: 10.13204/j.gyjz201002011
    [16]Zhou Lianjun, Peng Zhenbin, He Zhongming, Peng Wenxiang. NUMERICAL ANALYSIS FOR SIZE EFFECT OF STRATIFIED ROCK MASS UNDER COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 81-83,105. doi: 10.13204/j.gyjz200905017
    [17]Wang Aimin, Yao Qianfeng, Wu Minzhe. NONLINEAR NUMERICAL ANALYSIS OF INFLUENCE OF FILLED-BLOCK ON BEHAVIOR OF MULTI-RIBBED COMPOSITE WALL[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(1): 9-13. doi: 10.13204/j.gyjz200801003
    [18]Tian Ruijun, Du Xiuli, Peng Yijiang. NUMERICAL SIMULATION ON COMPRESSION FAILURE PROCESS OF CONCRETE AND SIZE EFFECT[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 68-72112. doi: 10.13204/j.gyjz200804018
    [19]Wang Yingge. FIELD TEST AND NUMERICAL ANALYSIS OF INTERACTION OF PILE- RAFT FOUNDATION ULTRA - HIGH TUBE-IN-TUBE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 10-15. doi: 10.13204/j.gyjz200505003
    [20]Chen Limin, Chen Sizuo. NUMERICAL ANALYSIS AND EXPERIMENTAL STUDY ON LOCAL STABILITY OF CYLINDRICAL SHELL UNDER AXIAL LOADS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 69-72. doi: 10.13204/j.gyjz200510021
  • Cited by

    Periodical cited type(35)

    1. 李成,刘红军,张秋虎. 土体参数对基坑支护及邻近建筑物变形影响的研究. 五邑大学学报(自然科学版). 2025(01): 8-15 .
    2. 孙啟钊,阎长虹,李慧,徐源,祁磊磊,刘刚. 二元结构地层中“天窗”在基坑降水中的环境效应. 江苏建筑. 2025(01): 81-85+106 .
    3. 董新军,黄建伟,王宁龙,陈际学. 深基坑开挖过程中立柱隆起问题数值模拟分析. 施工技术(中英文). 2024(01): 61-68 .
    4. 黄杏增. 换乘车站中新建车站盖挖逆作法的研究和应用. 福建建材. 2024(05): 81-86 .
    5. 邓明,刘勇. 筋材刚度对竖直加筋土挡墙工作性能的影响研究. 贵州科学. 2024(03): 71-76 .
    6. 王博文,夏晨,王子安,杨科学. 小应变硬化模型在南京漫滩区深大基坑中的应用研究. 北京建筑大学学报. 2024(03): 127-136 .
    7. 卫俊杰,凌飞,陈玉林,冷紫旺,胡正,戴北冰,刘建坤. 珠海富水软土小应变硬化参数试验研究. 中山大学学报(自然科学版)(中英文). 2024(04): 132-140 .
    8. 毕研栋,郭桢,卢劲锴,王清,陈慧娥,黄雨. 南海西沙典型珊瑚砂岛礁场地地震响应模拟与监测研究. 岩土工程学报. 2024(08): 1723-1731 .
    9. 邓明,刘勇,汪磊. 不同面板形式下竖直加筋土挡墙工作性能研究. 贵州科学. 2024(05): 86-91 .
    10. 王非,章莘苡,韩凯杰,余鑫,黄义,贾鹏蛟. 黏土地层矩形顶管施工引起的地层及结构变形响应研究. 现代隧道技术. 2024(S1): 1018-1026 .
    11. 刘晓岩. 不同地基处理桩对邻近桩基承载特性及沉降的影响. 浙江工业大学学报. 2023(01): 7-13 .
    12. 余娜,杨钧滔,苏添金,方能榕. 被动区加固对基坑邻近保护建筑的变形控制研究. 福建建设科技. 2023(02): 56-60 .
    13. 张成君. 长江漫滩二元地层盾构井基坑变形影响规律研究. 铁道建筑技术. 2023(04): 130-135 .
    14. 钟雅玲,郭飞,鲍逸玮. 基于HSS模型的双线地铁隧道下穿高压燃气管道的影响分析. 广东土木与建筑. 2023(05): 54-58+72 .
    15. 杨科学. 长江漫滩区深基坑开挖引起地层和支护结构变形分析. 价值工程. 2023(08): 67-69 .
    16. 王烁,康璞,吴梦龙,张佳琪. T型组合桩在软土地区基坑支护中的应用研究. 绿色科技. 2023(08): 272-275 .
    17. 董鑫,周峰,王旭东,朱锐. 基坑数值分析中HSS模型参数试验及应用. 科学技术与工程. 2023(18): 7878-7885 .
    18. 路立娜,严晗. 饱和粉砂土层深基坑桩锚支护稳定性影响因素分析. 建筑结构. 2023(S1): 2790-2794 .
    19. 田野,余地华,赖国梁,陈国,宋志,柳瑶. 汉江阶地软土区倾斜预制桩基坑支护计算与实测分析. 建筑科学. 2023(07): 168-174 .
    20. 乔海冰. 基于GHS模型和瞬态渗流-固结完全耦合的基坑开挖分析. 市政技术. 2023(08): 227-234 .
    21. 刘袁振,黎庆,李长春,刘凯,朱利明. 基于强度折减法的基坑土体加固归一化模型. 工业建筑. 2023(S1): 525-527 . 本站查看
    22. 鲍新杰. 基于HSS模型的深基坑开挖数值模拟研究. 福建建材. 2023(09): 75-77+80 .
    23. 张家勇. 土体GHS与HSS模型选择对基坑数值分析结果的影响. 福建建筑. 2023(09): 82-88 .
    24. 刘义,朱武卫,杨焜,席宇. 坑中坑基坑内坑支护桩弯矩发展规律. 科学技术与工程. 2023(30): 13085-13093 .
    25. 卢生安,王威,肖力. 温州软黏土结构性评价及盾构隧道施工扰动研究. 工业建筑. 2023(11): 1-10+20 . 本站查看
    26. 张坤鹏,闫中杰,刘扬,闵烨,蔡英鹏. 海上风电吸力筒设计HSS模型参数敏感性分析. 中国水运(下半月). 2023(12): 50-52 .
    27. 孙旭. 临近管桩施工对于既有桩基承载特性的影响. 低温建筑技术. 2023(12): 120-123 .
    28. 张坤鹏,闫中杰,刘扬,闵烨,蔡英鹏. 海上风电吸力筒设计HSS模型参数敏感性分析. 中国水运. 2023(24): 50-52 .
    29. 袁聚云,陈玺元,顾晓强,林毅峰,校建东,吴彩虹. 广东阳江海洋砂性土小应变硬化土模型参数的试验研究. 同济大学学报(自然科学版). 2022(06): 852-860 .
    30. 贾晶玺,于奎,黄勇,盛健挺,梁江晟,孟凡香. 基于小应变土体硬化模型的水工隧洞围岩稳定性研究. 河南科学. 2022(07): 1108-1114 .
    31. 邓日朗,郑先昌,岳云鹏,陈小坤,刘杰,刘慧芬. 竖井工法开挖深基坑对下卧既有隧道上浮变形的控制. 科学技术与工程. 2022(20): 8947-8953 .
    32. 唐金刚. 基坑复合变形模式下对邻近不同位置既有地铁车站的影响研究. 工程机械与维修. 2022(05): 78-83 .
    33. 林德周,郭肖红. 基坑工程侧邻地铁变形影响三维数值分析. 低温建筑技术. 2022(10): 76-79+84 .
    34. 邓声君,何杨,陈浩林,周峰,朱锐,师文豪,王源,马千里. 复杂环境软土地层盾构隧道推进实时动态仿真及变形预测研究——以苏州地铁S1号线盾构区间为例. 隧道建设(中英文). 2022(12): 2024-2035 .
    35. 潘珂珂,翟恩地,许成顺,孙毅龙. 硬化土本构模型在砂土海上风电大直径单桩基础的应用. 海洋技术学报. 2021(06): 114-122 .

    Other cited types(26)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.8 %FULLTEXT: 7.8 %META: 90.7 %META: 90.7 %PDF: 1.5 %PDF: 1.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %其他: 1.3 %其他: 1.3 %China: 1.8 %China: 1.8 %Egypt: 0.1 %Egypt: 0.1 %Happy Valley: 0.1 %Happy Valley: 0.1 %上海: 9.4 %上海: 9.4 %东京: 0.2 %东京: 0.2 %东莞: 1.9 %东莞: 1.9 %东营: 0.1 %东营: 0.1 %中山: 0.2 %中山: 0.2 %丽水: 0.4 %丽水: 0.4 %佛山: 0.2 %佛山: 0.2 %保定: 0.4 %保定: 0.4 %兰州: 0.2 %兰州: 0.2 %北京: 4.0 %北京: 4.0 %十堰: 0.1 %十堰: 0.1 %南京: 4.0 %南京: 4.0 %南宁: 0.8 %南宁: 0.8 %南昌: 1.2 %南昌: 1.2 %南阳: 0.1 %南阳: 0.1 %厦门: 0.9 %厦门: 0.9 %台州: 0.5 %台州: 0.5 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.8 %合肥: 0.8 %唐山: 0.1 %唐山: 0.1 %大连: 0.2 %大连: 0.2 %天津: 1.8 %天津: 1.8 %太原: 0.1 %太原: 0.1 %孟买: 0.1 %孟买: 0.1 %宁德: 0.5 %宁德: 0.5 %宁波: 1.3 %宁波: 1.3 %安康: 0.8 %安康: 0.8 %宜春: 0.2 %宜春: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.1 %广州: 1.1 %延安: 0.5 %延安: 0.5 %张家口: 0.2 %张家口: 0.2 %徐州: 0.6 %徐州: 0.6 %惠州: 0.2 %惠州: 0.2 %成都: 0.5 %成都: 0.5 %揭阳: 0.5 %揭阳: 0.5 %无锡: 0.5 %无锡: 0.5 %昆明: 1.1 %昆明: 1.1 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 6.2 %杭州: 6.2 %枣庄: 0.1 %枣庄: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 3.9 %武汉: 3.9 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.6 %济南: 0.6 %海口: 0.1 %海口: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 1.1 %深圳: 1.1 %温州: 0.4 %温州: 0.4 %湖州: 0.5 %湖州: 0.5 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %澳门: 0.1 %澳门: 0.1 %濮阳: 0.2 %濮阳: 0.2 %珠海: 0.1 %珠海: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.8 %石家庄: 0.8 %福州: 1.1 %福州: 1.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 15.6 %芒廷维尤: 15.6 %芝加哥: 1.4 %芝加哥: 1.4 %苏州: 0.4 %苏州: 0.4 %荆门: 0.1 %荆门: 0.1 %莆田: 0.1 %莆田: 0.1 %衢州: 0.4 %衢州: 0.4 %西宁: 6.5 %西宁: 6.5 %西安: 0.4 %西安: 0.4 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.1 %赣州: 0.1 %赫尔辛基: 0.1 %赫尔辛基: 0.1 %达州: 0.2 %达州: 0.2 %运城: 1.9 %运城: 1.9 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.9 %郑州: 2.9 %鄂州: 0.5 %鄂州: 0.5 %重庆: 0.9 %重庆: 0.9 %金华: 0.4 %金华: 0.4 %长沙: 0.9 %长沙: 0.9 %阳泉: 0.5 %阳泉: 0.5 %随州: 0.1 %随州: 0.1 %青岛: 0.8 %青岛: 0.8 %鞍山: 0.1 %鞍山: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.6 %黄冈: 0.6 %黄石: 0.8 %黄石: 0.8 %黑尔福德: 0.1 %黑尔福德: 0.1 %其他其他ChinaEgyptHappy Valley上海东京东莞东营中山丽水佛山保定兰州北京十堰南京南宁南昌南阳厦门台州台湾省合肥唐山大连天津太原孟买宁德宁波安康宜春常州常德平顶山广州延安张家口徐州惠州成都揭阳无锡昆明晋中晋城朝阳杭州枣庄格兰特县武汉沈阳济南海口淮南深圳温州湖州湘潭漯河澳门濮阳珠海盐城石家庄福州绵阳芒廷维尤芝加哥苏州荆门莆田衢州西宁西安贵阳赣州赫尔辛基达州运城邯郸郑州鄂州重庆金华长沙阳泉随州青岛鞍山马鞍山黄冈黄石黑尔福德

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (770) PDF downloads(19) Cited by(61)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return