LI Xue, WU Jiuqi, GENG Fengjuan, GENG Aopeng, ZHANG Yushen. CALCULATIONS OF LONGITUDINAL DEFORMATION FOR RIVER-CROSSING SHIELD TUNNELS INDUCED BY SCOUR IN DEEP CHANNEL SECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 6-10,38. doi: 10.13204/j.gyjzG20112306
Citation:
LI Xue, WU Jiuqi, GENG Fengjuan, GENG Aopeng, ZHANG Yushen. CALCULATIONS OF LONGITUDINAL DEFORMATION FOR RIVER-CROSSING SHIELD TUNNELS INDUCED BY SCOUR IN DEEP CHANNEL SECTIONS[J]. INDUSTRIAL CONSTRUCTION , 2021, 51(7): 6-10,38. doi: 10.13204/j.gyjzG20112306
LI Xue, WU Jiuqi, GENG Fengjuan, GENG Aopeng, ZHANG Yushen. CALCULATIONS OF LONGITUDINAL DEFORMATION FOR RIVER-CROSSING SHIELD TUNNELS INDUCED BY SCOUR IN DEEP CHANNEL SECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 6-10,38. doi: 10.13204/j.gyjzG20112306
Citation:
LI Xue, WU Jiuqi, GENG Fengjuan, GENG Aopeng, ZHANG Yushen. CALCULATIONS OF LONGITUDINAL DEFORMATION FOR RIVER-CROSSING SHIELD TUNNELS INDUCED BY SCOUR IN DEEP CHANNEL SECTIONS[J]. INDUSTRIAL CONSTRUCTION , 2021, 51(7): 6-10,38. doi: 10.13204/j.gyjzG20112306
CALCULATIONS OF LONGITUDINAL DEFORMATION FOR RIVER-CROSSING SHIELD TUNNELS INDUCED BY SCOUR IN DEEP CHANNEL SECTIONS
1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China
Received Date: 2020-11-23
Available Online:
2021-11-11
Abstract
The scour and deposition in deep channel sections of a river bed make the longitudinal loads acting on river-crossing tunnels complicated and affect the longitudinal deformation of tunnels. Based on the river-crossing tunnel project of Nanjing Metro, the longitudinal deformation properties of the shield tunnel caused by different scoured depth and thalweg locations were studied. Firstly, the finite element model was constructed to obtain the longitudinal deformation of the tunnel in different scoured conditions. According to the deformation curve, the curvature radius of the tunnel and the opening widths between joints were calculated. The results showed that:1) The radius of curvature of the tunnel and the maximum opening widths of segment joints were related to the scoured depth and range. The larger the scoured range, the greater the rebound of the tunnel and the smaller the corresponding curvature radius, the larger the opening between segements. 2) The position of the maximum opening width was near the thalweg. 3) In the vicinity of change point for tunnel slopes, the opening widths of segments were obviously larger than that of constant slope sections. Therefore, the locations of changing slope for tunnels should be away from the zones of depth variation for thalwegs in design.
References
[1]
张常委, 梁诏斌, 张志强, 等.地层渗透系数对隧道纵向结构的影响研究[J]. 现代隧道技术, 2008, 45(增刊1):259-261.
[2]
沈林冲, 钟小春, 秦建设, 等.钱塘江盾构越江隧道最小覆土厚度的确定[J]. 岩土力学, 2011, 32(1):111-115.
[3]
LI Y, ZHEN D C, JUN T. Numerical Simulation of Longitudinal Settlement of Shield Tunnel in the Coastal City[J]. Shanghai Marine Georesources & Geotechnology, 2017, 35(3):365-370.
[4]
张勇, 马金荣, 陶祥令, 等.地面堆载诱发下既有盾构隧道纵向变形的解析解[J]. 隧道建设(中英文), 2020, 40(1):66-74.
[5]
周宁, 袁勇.越江盾构隧道纵向变形曲率与管环渗漏的关系[J]. 同济大学学报(自然科学版), 2009, 37(11):1446-1451, 1501.
[6]
李雪, 霍鹏, 周顺华, 等.盾构隧道双道密封垫防水能力及失效模式研究[J]. 铁道科学与工程学报, 2020, 17(1):159-166.
[7]
张金龙, 苟长飞, 叶飞.大断面跨海盾构隧道结构设计与参数分析[J]. 现代隧道技术, 2020, 57(2):61-67.
[8]
WU H N, SHEN S L, LIAO S M, et al. Longitudinal Structural Modelling of Shield Tunnels Considering Shearing Dislocation Between Segmental Rings[J]. Tunnelling and Underground Space Technology, 2015, 50:317-323.
[9]
张军, 张翅翔.河床冲淤引起过江盾构隧道纵向变形的研究[J]. 隧道建设, 2009, 29(2):152-156.
[10]
陈拴, 吴怀娜, 沈水龙, 等.盾构隧道纵向结构变形模式及理论模型[J]. 土木工程学报, 2019, 52(增刊1):85-92.
Relative Articles
[1] CHEN Jian, YANG Gongbiao, WANG Zhikui, XIAN Guijun, KONG Deao. Research and Applications of FRP in Large-Diameter Shield Tunnel Engineering [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 54-60. doi: 10.3724/j.gyjzG24032001
[2] WANG Xiang, CHEN Fada, WU Xianguo, FENG Zongbao, CHEN Hongyu. Stability Evaluation of Working Faces of Shield Tunnels in Karst Based on Cloud Model and D-S Evidence Theory [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 65-72. doi: 10.13204/j.gyjzG22011206
[3] LU Qingrui, JIN Xiuwei, LI Dongwei, CEHN Shijun, WANG Shuairu. Comparative Analysis on Ground Subsidence Above Entrances of Shield Tunnels by Horizontal Freezing [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 50-54,49. doi: 10.13204/j.gyjzG22070507
[4] XUE Yong-jian, ZHU Xu-hui, WANG She-jiang, ZHANG Ya-yong, WU Feng, ZHAO Jin-hui. Construction Sequence Optimization of Overlap Shield Tunnel Beneath Water Supply Pipe in Close Distance [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 219-223,146. doi: 10.13204/j.gyjzG22062508
[5] LI Xue, ZHANG Yushen, WANG Yangyang, GUO Qingfei, XIANG Qiao, GONG Zibang. Study on Interplay of Overlapping Shield Tunnelling in Sandy Pebble Strata and Its Control Measures [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 10-16. doi: 10.13204/j.gyjzG21063015
[6] LI Ting, JIANG Annan, ZHANG Fengrui, ZHONG Yue, XU Bo. Effects of Jointed Rock Masses on Stability of Shield Tunnels Under Tunnelling and Ground Loss Rates [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 29-37. doi: 10.13204/j.gyjzG21052114
[7] Abdul Motalleb QAYTMAS, TIAN Yu, LU Dechun, DU Xiuli. INFLUENCE OF RELATIVE DENSITIES FOR SURROUNDING ROCKS ON STRATUM SUBSIDENCE DURING TUNNELLING [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 11-17. doi: 10.13204/j.gyjzG20072217
[8] CHEN Zhengfa, ZHANG Jie, YAN Zhiguo, BIAN Minghui. STUDY OF WATER AND EARTH PRESSURE MODES ON SHIELD TUNNELS IN WATER-RICH DIORITE STRATA [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 25-30. doi: 10.13204/j.gyjzG21031806
[9] TAO Yu, LIANG Weiqiao, FANG Wujun. RESEARCH ON THE STABILITY OF UNDERCROSSED SUBWAY SHIELD TUNNEL [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 66-70. doi: 10.13204/j.gyjz202004012
[11] Li Chunlin. STUDY OF SHIELD CONSTRUCTION INFLUENCES ON MECHANICAL BEHAVIOR OF SOIL AROUND TUNNELING SHIELD [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 93-97. doi: 10.13204/j.gyjz201312017
[12] Shao Guoxin. THE DESIGN AND CONSTRUCTION OF FREEZING METHOD OF CONNECTED AISLE FOR THE METRO SHIELD TUNNELS IN NINGBO SOFT SOIL STRATUM [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 148-152. doi: 10.13204/j.gyjz201311033
[13] Liu Jifeng, Liu Bo, Zhang Huizhi. EXPERIMENTAL STUDY ON THE SHIELD TUNNELING-INDUCED SURFACE SETTLEMENT [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 91-98. doi: 10.13204/j.gyjz201103018
[14] Zhao Honghua, Chen Guoxing. CALCULATION METHOD OF GROUND SURFACE DEFORMATION CONSIDERING INFLUENCES OF SHIELD TUNNEL DEPTH AND ROCK-SOIL CHARACTERISTICS [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 60-64,42. doi: 10.13204/j.gyjz201012016
[15] Zhou Haiying, Chen Tingguo, Li Lixin. STUDY ON JOINT LOAD TEST OF METRO SHIELD TUNNELING LINING [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 79-83. doi: 10.13204/j.gyjz201004018
[16] Zhou Haiying, Chen Tingguo, Li Lixin. STUDY ON JOINT BENDING STIFFNESS AND INFLUENCING FACTORS OF METRO SHIELD TUNNELING LINING [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 59-61,122. doi: 10.13204/j.gyjz201007016
[17] Wei Gang. STUDY ON CALCULATION FOR WIDTH PARAMETER OF SURFACE SETTLEMENT TROUGH INDUCED BY SHIELD TUNNEL [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 74-79. doi: 10.13204/j.gyjz200912019
[18] Ma Baoguo, Luo Zhongtao, Wang Kai, Zou Dinghua, Wang Yingbin, Wang Xingang. THE MODEL OF CONCRETE DURABILITY FAILING WITH TIME-CALCULATION METHOD USED IN THE SERVICE-LIFE PREDICTION OF HILS [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 82-84,74. doi: 10.13204/j.gyjz200811020
[19] Qu Jili, Ge Xiurun. ANALYSIS OF CHARACTERISTICS OF SETTLEMENT TROUGH INDUCED BY SHIELD CONSTRUCTION IN SOFT SOIL AREA [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 42-46. doi: 10.13204/j.gyjz200501013
Cited by Periodical cited type(1) 1. 陈孝华,何应道,封坤,郭文琦. 河床冲淤作用下公轨合建盾构隧道纵向力学性能研究. 公路. 2023(01): 391-400 .
Other cited types(2)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 1 2 3 4 5 6
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.5 % FULLTEXT : 14.5 % META : 83.6 % META : 83.6 % PDF : 1.9 % PDF : 1.9 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 10.1 % 其他 : 10.1 % China : 3.8 % China : 3.8 % [] : 0.6 % [] : 0.6 % 上海 : 3.1 % 上海 : 3.1 % 九江 : 1.3 % 九江 : 1.3 % 北京 : 5.7 % 北京 : 5.7 % 南京 : 0.6 % 南京 : 0.6 % 南宁 : 0.6 % 南宁 : 0.6 % 南昌 : 1.3 % 南昌 : 1.3 % 呼和浩特 : 0.6 % 呼和浩特 : 0.6 % 嘉兴 : 0.6 % 嘉兴 : 0.6 % 天津 : 1.3 % 天津 : 1.3 % 宁波 : 0.6 % 宁波 : 0.6 % 宿州 : 1.3 % 宿州 : 1.3 % 常德 : 1.3 % 常德 : 1.3 % 张家口 : 3.8 % 张家口 : 3.8 % 晋城 : 0.6 % 晋城 : 0.6 % 朝阳 : 0.6 % 朝阳 : 0.6 % 杭州 : 2.5 % 杭州 : 2.5 % 洛阳 : 0.6 % 洛阳 : 0.6 % 济南 : 0.6 % 济南 : 0.6 % 漯河 : 1.9 % 漯河 : 1.9 % 烟台 : 0.6 % 烟台 : 0.6 % 石家庄 : 0.6 % 石家庄 : 0.6 % 芒廷维尤 : 16.4 % 芒廷维尤 : 16.4 % 芝加哥 : 1.3 % 芝加哥 : 1.3 % 西宁 : 21.4 % 西宁 : 21.4 % 贵阳 : 2.5 % 贵阳 : 2.5 % 运城 : 9.4 % 运城 : 9.4 % 邯郸 : 0.6 % 邯郸 : 0.6 % 郑州 : 1.9 % 郑州 : 1.9 % 重庆 : 0.6 % 重庆 : 0.6 % 阳泉 : 0.6 % 阳泉 : 0.6 % 青岛 : 0.6 % 青岛 : 0.6 % 其他 China [] 上海 九江 北京 南京 南宁 南昌 呼和浩特 嘉兴 天津 宁波 宿州 常德 张家口 晋城 朝阳 杭州 洛阳 济南 漯河 烟台 石家庄 芒廷维尤 芝加哥 西宁 贵阳 运城 邯郸 郑州 重庆 阳泉 青岛