Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YU Chunchun, FU Min. Torsional Vibration of Partially Exposed Pipe Piles Considered Soil-plug Effect in Viscoelastic Saturated Soil Expressed by Fractional Derivatives[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 150-158. doi: 10.13204/j.gyjzG20110601
Citation: YU Chunchun, FU Min. Torsional Vibration of Partially Exposed Pipe Piles Considered Soil-plug Effect in Viscoelastic Saturated Soil Expressed by Fractional Derivatives[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 150-158. doi: 10.13204/j.gyjzG20110601

Torsional Vibration of Partially Exposed Pipe Piles Considered Soil-plug Effect in Viscoelastic Saturated Soil Expressed by Fractional Derivatives

doi: 10.13204/j.gyjzG20110601
  • Received Date: 2020-11-06
    Available Online: 2022-04-24
  • Based on the viscoelastic theory expressed by fractional derivatives and the theory of porous media, the torsional dynamic control equations in the form of displacement for viscoelastic saturated soil expressed by fractional derivatives were obtained by considering the soil-plug effect of pipe piles, the torsionally dynamic interaction model to describe viscoelastic saturated soil expressed by fractional derivatives and partially exposed pipe piles was constructed. The equivalent stiffness and damping coefficients of the equivalent Winkler torsional spring-damper model were obtained by considering properties of fractional derivatives and Bessel Function, and boundary conditions of soil. Considering the effect of saturated soil around and in pipe piles, the torsional vibration of partially exposed pipe piles in saturated soil was solved by using the transfer matrix method, and the torsional stiffness factor and equivalent damping coefficient at tops pipe piles were obtained. The influences of mechanical and geometric parameters of pipe piles and soil on torsional vibration of pipe piles were discussed by numerical examples. The results showed that the effect of the geometric parameters for pipe piles on torsional vibration of partially exposed pipe piles in viscoelastic saturated soil expressed by fractional derivative was greater than that of mechanical properties for materials. When considering the soil-plug effect, the influence of soil viscosity could not be ignored on torsional vibration of partially exposed pipe piles in viscoelastic saturated soil, but the difference of properties between saturated soil around and in pipe piles could be ignored. The wall thickness of pipe piles was sensitive to the torsional vibration.
  • [1]
    NOVAK M, ABOUL-ELLA F. Impedance functions of piles in layered media[J]. Journal of Engineering Mechanical Division, 1978, 104(3):643-661.
    [2]
    NOGAMI T, KONAGAI K. Time domain flexural response of dynamically loaded single pile[J]. Journal of Engineering Mechanics, 1988, 114(9):1512-1525.
    [3]
    YAO S, NOGAMI T. Lateral cyclic response of a pile in viscoelastic winkler subgrade[J]. Journal of Engineering Mechanics, 1994, 120(4):758-775.
    [4]
    李强,王奎华,谢康和.饱和土中端承桩纵向振动特性研究[J]. 力学学报, 2004, 36(4):435-442.
    [5]
    MAESO O, AZNAREZ J J, GARCIA F. Dynamic impedances of piles and groups of piles in saturated soils[J]. Computer & Structurees, 2005, 83(10):769-782.
    [6]
    王奎华, 郭海超, 高柳, 等. 三维波动土中带承台单桩的纵向振动特性研究[J]. 岩石力学与工程学报, 2018, 37(2):497-505.
    [7]
    孟坤, 崔春义, 许成顺, 等. 考虑径向波动效应的黏弹性支承桩纵向振动阻抗研究[J].振动工程学报, 2019,32(2):296-303.
    [8]
    DING X M, LIU, H L, CHU J, et al. Time-domain solution for transient dynamic response of a large-diameter thin-walled pipe pile[J]. Earthquake Engineering and Engineering Vibration, 2015, 14(2):239-251.
    [9]
    刘林超, 闫启方, 王颂, 等.基于轴对称模型的管桩竖向振动研究[J]. 岩土力学, 2016, 37(1):119-125.
    [10]
    沈纪苹, 陈蕾. 基于传递矩阵法的层状土中管桩水平动力阻抗分析[J]. 岩土力学, 2016, 37(10):2810-2816.
    [11]
    郑长杰, 丁选明, 栾鲁宝. 黏弹性地基中管桩水平动力特性分析[J].岩土力学, 2017, 38(1):26-32.
    [12]
    吴文兵,邓国栋,张家生,等.考虑横向惯性效应时桩侧土-管桩-土塞纵向耦合振动特性研究[J].岩土力学, 2017, 38(4):993-1001.
    [13]
    吴君涛, 王奎华, 刘鑫, 等.考虑桩身三维效应下的大直径薄壁管桩-桩端土塞耦合振动模型及其解析解[J]. 岩石力学与工程学报, 2019, 38(5):1064-1072.
    [14]
    闫启方, 刘林超. 基于多圈层模型的径向非线性饱和土-管桩纵向耦合振动[J]. 科学技术与工程, 2018, 18(11):1671-1815.
    [15]
    DE BOER R, LIU Z F. Propagation of acceleration waves in incompressible saturated porous solids[J]. Transport in Porous Media, 1995, 21(3):163-173.
    [16]
    刘林超, 杨骁. 分数导数模型描述的饱和土桩纵向振动分析[J]. 岩土力学, 2011, 32(2):526-532.
    [17]
    李耀庄, 李博. 单桩水平及水平-摇摆耦合振动分析[J].世界地震工程,2006, 22(4):160-165.
  • Relative Articles

    [1]ZHOU Zhiguang, CHEN Hao, ZHAO Jinyi. Study on Shaking Table Test of Nuclear Structure Considering SSI Effect and Isolation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 87-92. doi: 10.13204/j.gyjzG19100102
    [2]LIU Yuanyuan, SUN Jianlin. TIME DOMAIN DYNAMIC ANALYSIS OF SINGLE PILES SUBJECTED TO IMPACT LOADS IN UNSATURATED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 121-129. doi: 10.13204/j.gyjzG20052007
    [6]Fu Min Fang Yongming Yang Wenling, . TORSIONAL VIBRATION OF PARTIALLY EMBEDDED SINGLE PILE SOIL DESCRIBED BY FRACTIONAL DERIVATIVE VISCOELASTIC MODEL[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 108-112. doi: 10.13204/j.gyjz201507022
    [7]Liu Junwei, Zhao Chen, Xie jian, Yu Xiuxia. SIMULATION COMPUTATION OF COMPACTION EFFECT FOR OPEN-ENDED PIPE PILE BASED ON PLUGGING EFFECT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 77-82. doi: 10.13204/j.gyjz201402018
    [8]Yao Zhaoming, Zhou Yang, Xu Ying, Wang Houliang. GENETIC ALGORITHMS FRACTIONAL ORDER DERIVATIVE BURGERS CREEP MODEL FOR ARTIFICIAL FROZEN SOIL[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 73-76. doi: 10.13204/j.gyjz201311017
    [9]Wang Mingwu, Yang Jiangfeng, Li Jian, Qin Shuai. SOIL-WATER CHARACTERISTICS OF UNDISTURBED AND UNSATURATED EXPANSIVE CLAYS IN THE XINQIAO INTERNATIONAL AIRPORT AREA OF HEFEI[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 41-45. doi: 10.13204/j.gyjz201212010
    [10]Yu Rongjun, Peng Xuanmao, Peng Xinxuan. DESIGN AND RESEARCH OF PORTAL FRAME WITH COMPLICATED MEZZANINE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 144-146,96. doi: 10.13204/j.gyjz201202032
    [11]Wang Yaowu, Liu Xiaomin, Zhang Yang. INVESTIGATION OF DRIVING EFFECT IN SATURATED SOIL FOR PRESTRESSED HIGH INTENSITY CONCRETE PRESSED PILE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 99-102,126. doi: 10.13204/j.gyjz201103019
    [12]Wu Ruiqian, Xie Kanghe, Shen Jianming. ANALYTICAL SOLUTIONS OF ONE-DIMENSIONAL THERMAL CONSOLIDATION OF SATURATED SOIL UNDER PERIODIC FLUCTUATION OF SURFACE TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 86-90. doi: 10.13204/j.gyjz201008020
    [13]Nie Weidong, Lu Jianfei. INFLUENCE OF DIFFERENT COMPATIBILITY CONDITIONS BETWEEN PILE AND SOIL ON DYNAMIC RESPONSE OF A SINGLE PILE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 55-59. doi: 10.13204/j.gyjz200708015
    [14]Mei Fu-liang. INCREMENT-DIMENSIONAL PRECISE INTEGRATION METHOD OF SOLVING CONSOLIDATION EQUATION FOR SATURATION SOIL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 50-51. doi: 10.13204/j.gyjz200604015
    [15]Yang Hua, Yang Min, Zhou Hongbo. AN ANALYTICAL SOLUTION FOR SINGLE PILE IN NON-HOMOGENEOUS SOIL CONSIDERING SOIL HARDENING BEHAVIOR OF PILE TIP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 46-48,55. doi: 10.13204/j.gyjz200503017
    [16]Cao Xiujuan, Liu Kaifu, Xie Xinyu, Liu Yilin. MEASUREMENTS AGAINST SOIL-SQUEEZING DURING PILE-DIVING IN THICK SOFT SOIL AND FIELD MONITORING METHOD[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 55-57. doi: 10.13204/j.gyjz200406018
  • Cited by

    Periodical cited type(1)

    1. 周凤玺,孙烈璞,柳鸿博,曹小林,梁玉旺. 分数阶黏弹性饱和地基中大直径管桩竖向动力响应分析. 岩土力学. 2024(11): 3481-3490 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.8 %FULLTEXT: 9.8 %META: 89.0 %META: 89.0 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.6 %其他: 25.6 %China: 1.2 %China: 1.2 %保定: 1.2 %保定: 1.2 %北京: 2.4 %北京: 2.4 %十堰: 1.2 %十堰: 1.2 %南京: 2.4 %南京: 2.4 %天津: 1.2 %天津: 1.2 %宿州: 1.2 %宿州: 1.2 %常德: 1.2 %常德: 1.2 %广州: 1.2 %广州: 1.2 %张家口: 4.9 %张家口: 4.9 %晋城: 1.2 %晋城: 1.2 %朝阳: 1.2 %朝阳: 1.2 %深圳: 1.2 %深圳: 1.2 %漯河: 2.4 %漯河: 2.4 %芒廷维尤: 23.2 %芒廷维尤: 23.2 %芝加哥: 1.2 %芝加哥: 1.2 %西宁: 4.9 %西宁: 4.9 %贵阳: 2.4 %贵阳: 2.4 %运城: 13.4 %运城: 13.4 %邯郸: 1.2 %邯郸: 1.2 %郑州: 2.4 %郑州: 2.4 %长沙: 1.2 %长沙: 1.2 %其他China保定北京十堰南京天津宿州常德广州张家口晋城朝阳深圳漯河芒廷维尤芝加哥西宁贵阳运城邯郸郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads(1) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return