Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Zhansheng, SHI Guoliang, WANG Jingchao. RESEARCH ON INTELLIGENT PREDICTION METHOD OF PRESTRESSED CABLE FORCE BASED ON DIGITAL TWINS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 1-9,123. doi: 10.13204/j.gyjzG20110502
Citation: LIU Zhansheng, SHI Guoliang, WANG Jingchao. RESEARCH ON INTELLIGENT PREDICTION METHOD OF PRESTRESSED CABLE FORCE BASED ON DIGITAL TWINS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 1-9,123. doi: 10.13204/j.gyjzG20110502

RESEARCH ON INTELLIGENT PREDICTION METHOD OF PRESTRESSED CABLE FORCE BASED ON DIGITAL TWINS

doi: 10.13204/j.gyjzG20110502
  • Received Date: 2020-11-05
    Available Online: 2021-09-16
  • Publish Date: 2021-09-16
  • Aiming at the problem of low accuracy and intelligence of cable force prediction in the cable tensioning process, an intelligent prediction method of prestressed cable force based on digital twins was proposed. According to the current research status of cable tension, the main factors affecting the cable force were analyzed, and the current method of prestressed cable force prediction were summarized. Under the theoretical framework of intelligent predictive closed-loop control, a predictive maintenance method based on digital twins was explored. On this basis, the framework of the fusion prediction method based on digital twins was established, and the implementation process of the fusion prediction and maintenance method was explored. The cable force was predicted from the working condition parameters through the fusion of data. A case analysis of the spoke-type cable truss verified the effectiveness of the method. The intelligent prediction method for prestressed cable force based on digital twins could directly predict the state of cable force from working condition parameters, which improve the accuracy and intelligence of the safety assessment of prestressed steel structures.
  • [1]
    张爱林, 刘廷勇, 张艳霞, 等.基于智能建造的快速全装配大跨度预应力空间钢结构体系创新研究展望[J]. 北京工业大学学报, 2020, 46(6):591-603.
    [2]
    张谨, 杨律磊, 龚敏锋, 等.苏州现代传媒广场新型钢结构技术研究与应用[J]. 建筑结构, 2019, 49(1):25-35

    , 48.
    [3]
    陈志华, 马青, 闫翔宇, 等.复合式索穹顶施工误差影响及控制技术研究[J]. 湖南大学学报(自然科学版), 2018, 45(9):47-56.
    [4]
    郭彦林, 张旭乔.温度作用和索长误差对采用定长索设计的张拉结构影响研究[J]. 土木工程学报, 2017, 50(6):11-22

    , 61.
    [5]
    ZHU M L, DONG S L, YUAN X F. Failure Analysis of a Cable Dome Due to Cable Slack or Rupture[J]. Advances in Structural Engineering, 2013, 16(2):259-271.
    [6]
    张中昊, 支旭东, 李奇训, 等.新型索撑式单层球面网壳选型与预应力张拉模拟研究[J]. 工程力学, 2018, 35(10):193-202

    , 211.
    [7]
    薛素铎, 王成林, 孙国军, 等.Levy型劲性支撑穹顶静力性能试验研究[J]. 建筑结构学报, 2020, 41(3):150-155.
    [8]
    THAI H T, KIM S E. Nonlinear Static and Dynamic Analysis of Cable Structures[J]. Finite Elements in Analysis & Design, 2011, 47(3):237-246.
    [9]
    ANDREW B, MOHAMMED H S, MOHAMED M.A BIM-Based Framework for Quantitative Assessment of Steel Structure Deconstructability[J]. Automation in Construction, 2019, 111.DOI: 10.1016/j.autcon.2019.103064.
    [10]
    ASHWEAR N, TAMADAPU G, ERIKSSON A. Optimization of Modular Tensegrity Structures for High Stiffness and Frequency Separation Requirements[J]. International Journal of Solids & Structures, 2015, 80:297-309.
    [11]
    AREZKI S, KAMEL L, AMAR K. Effects of Temperature Changes on the Behaviour of a Cable Truss System[J]. Journal of Constructional Steel Research, 2017, 129:111-118.
    [12]
    周成, 孙恺庭, 李江, 等.基于数字孪生的车间三维可视化监控系统[J/OL]. [2020-11-04]. 计算机集成制造系统.http://kns.cnki.net/kcms/detail/11.5946.TP.20200817.0917.008.html.
    [13]
    樊启祥, 林鹏, 魏鹏程, 等.智能建造闭环控制理论[J/OL]. [2020-11-04].清华大学学报(自然科学版). https://doi.org/10.16511/j.cnki.qhdxxb.2020.26.023.
    [14]
    江丰光, 熊博龙, 张超.我国人工智能如何实现战略突破:基于中美4份人工智能发展报告的比较与解读[J]. 现代远程教育研究, 2020, 32(1):3-11.
    [15]
    闫纪红, 李柏林.智能制造研究热点及趋势分析[J]. 科学通报, 2020, 65(8):684-694.
    [16]
    三局工程管理学部办公室.中国工程院重点咨询项目《中国建造2035战略研究》会暨中国工程院院士重庆行系列活动在渝举行[EB/OL].[2020-04-07

    ]. http://www.cae.cn/cae/html/main/col110/2019G05/07/20190507142610206746869_1.html.
    [17]
    刘占省, 王竞超, 韩泽斌, 等.车辐式索桁架长度误差敏感性试验及可靠性评估[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊2):23-30.
    [18]
    郭彦林, 张旭乔.温度作用和索长误差对采用定长索设计的张拉结构影响研究[J]. 土木工程学报, 2017, 50(6):11-22

    , 61.
    [19]
    周浩, 杜咏, 李国强, 等.预应力钢绞线温度膨胀及高温蠕变性能试验研究[J]. 工程力学, 2018, 35(6):123-131.
    [20]
    陈志华, 王霄翔, 刘红波, 等.张弦结构体系全寿命预应力损失模型分析[J]. 工业建筑, 2015, 45(8):25-29

    , 138.
    [21]
    聂珲, 陈海峰.基于NB-IoT环境监测的多传感器数据融合技术[J]. 传感技术学报, 2020, 33(1):144-152.
    [22]
    周一一, 舒展, 周昌风, 等.基于智能建造的负泊松比耗能钢板的形式设计及优化[J]. 工业建筑, 2020, 50(2):137-142

    , 157.
    [23]
    LIU Z S, SHI G L, ZHANG A S, et al. Intelligent Tensioning Method for Prestressed Cables Based on Digital Twins and Artificial Intelligence[J]. Sensors, 2020, 20(24).DOI: 10.3390/s20247006.
    [24]
    严仁章, 万里源, 周建庭, 等.索拱桁架-单层网壳复合空间结构的结构设计与稳定性分析[J]. 工业建筑, 2020, 50(4):103-110.
    [25]
    刘占省, 张安山, 王文思, 等.数字孪生驱动的冬奥场馆消防安全动态疏散方法[J]. 同济大学学报(自然科学版), 2020, 48(7):962-971.
    [26]
    熊超华, 骆汉宾.施工现场作业环境监测数据融合预警方法研究[J]. 施工技术, 2018, 47(23):125-129.
    [27]
    LI Y, JIA H L, QI J T, et al. An Acquisition Method of Agricultural Equipment Roll Angle Based on Multi-Source Information Fusion[J]. Sensors, 2020, 20(7).DOI: 10.3390/s20072082.
  • Relative Articles

    [1]QIN Wenbo, ZHOU Cheng, CHEN Jian, WANG Fan, LIU Wenli. Digital Twin-Based Platform Framework for Metro Bridge and Tunnel Structure Service[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 43-50. doi: 10.3724/j.gyjzG24010401
    [2]YU Caizhao, WANG Haitao, SONG Tianshuai, ZHENG Jiarong, LIU Zhansheng, YANG Kai, LIU Junjie. A Digital Delivery Method for Large Underground Spaces Integrating Multi-source and Multi-dimensional Data[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 16-24. doi: 10.3724/j.gyjzG23111320
    [3]CHEN Hongda, LI Xin, YU Caizhao, HE Meng, LIU Zhansheng, TONG Li. Safety Monitoring Twin System for Three Major Building Super-Large Excavation Pits Based on Internet of Things Technology[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 1-8. doi: 10.3724/j.gyjzG23111319
    [4]DENG Xingrui, ZHANG Furong, XU Zhen, YUE Qingrui, WANG Yuxiang, HAN Guoquan, SHI Zhongqi. A Review on the Applications of Digital Twin Technology in Urban Safety[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 35-42. doi: 10.3724/j.gyjzG22122605
    [5]HUANG Haifeng, YIN Yang, ZHOU Yi, YANG Didan. A Review on Digital Twin Application Research for Urban Water Security[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 144-154. doi: 10.3724/j.gyjzG23120902
    [6]WU Ying, LI Aiqun. Application and Circled Layer Scene Construction of Digital Twin Technology from Coupling Perspective of "City-Building-People"[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 180-189. doi: 10.13204/j.gyjzG23012403
    [7]YU Fangqiang, XU Xiaohong, SONG Tianren, ZHANG Chunyi. Application of Intelligent Operation and Maintenance System in Cultural Venues Based on Digital Twins After Opening[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 1-7. doi: 10.13204/j.gyjzG22073106
    [8]ZHAO Yong, DOU Hongqiang, WANG Peng, SUN Yongxin. Safety Assessment and Optimization of High-Voltage Transmission Towers Affected by Blasting Vibration of Adjacent Outlet Tunnel Based on Infinite Element Boundary[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 22-28. doi: 10.13204/j.gyjzG21042308
    [9]HU Zhenzhong, LIU Yi, LIN Chao. Research Prospect of BIM-Based Information Technologies for Engineering Management[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 195-203. doi: 10.13204/j.gyjzG22073009
    [10]YANG Hao, YU Fangqiang, GAO Shang, XU Jinglin. Research on Data Fusion of Building Operation and Maintenance Systems Based on Digital Twins and Its Application[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 204-210,235. doi: 10.13204/j.gyjzG22073107
    [11]CAO Meigen, ZHANG Ruoyu, ZHU Yunxiang, WANG Yu, KONG Fanfang, PAN Yiwei. Research on Wind Resistant Reinforcement of In-Plane Cables of Transmission Line Tower and Influence of Design Parameters[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 48-56.
    [12]LIU Zhansheng, SHI Guoliang, SUN Jiajia. DIGITAL TWIN AND ITS APPLICATION IN INTELLIGENT CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 184-192. doi: 10.13204/j.gyjzG20081017
    [13]Wang Yuanqing, Zong Liang, Zhang Tianshen, Gao Xiaolei. DAMAGE DETECTING AND SAFETY APPRAISAL OF THE XIDAN ALUMINUM OVERPASS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 144-148. doi: 10.13204/j.gyjz201309028
    [14]Li Buhui, Zhang Dachang, Bao Tao. ANALYSES OF STRUCTURAL TYPE SELECTION FOR THE LONG-SPAN ROOF OF A GYMNASIUM CONSIDERING HURRICANE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 121-126. doi: 10.13204/j.gyjz201211026
    [15]Cao Zhong-min, Li Ai-qun, Han Xiao-ling, Du Dong-sheng, Xiao Chun-ping, Zhao Zhao, Ji Xin-qiang, Mao Ai-ling, Shi Zhen-cang. HEALTH MONITORING SYSTEM FOR OVERBRIDGE STRUCTUREOF A STEELWORKS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 94-96. doi: 10.13204/j.gyjz200711026
    [16]Huang Mingxin, Qian Weijun, Huang Kailong, Chen Bin, Mao Cheng. ERECTION TECHNOLOGY OF LARGE SPAN CHORD -TENSION TRUSS STRUCTURE FOR HARBIN INTERNATIONAL EXHIBITION CENTER[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(9): 41-44. doi: 10.13204/j.gyjz200709007
    [17]Hu Cheng, Fu Xiubing, Sun Baojun, Li Yanhe. METHOD AND PRACTICE OF REINFORCED CONCRETE COLUMN STRENGTHENED BY PRESTRESSING STAY[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 85-87. doi: 10.13204/j.gyjz200402025
  • Cited by

    Periodical cited type(8)

    1. 史可贞,林群雄,卢立红,付丽秋. 数字孪生助力社会安全治理革新:机遇与挑战. 中国人民警察大学学报. 2025(02): 34-42 .
    2. 宋华霖,姜绍飞. 数字孪生在空间结构生命周期管理中的应用与挑战. 福州大学学报(自然科学版). 2024(03): 369-378 .
    3. 郭峰,李婷,贺晋,李果. 基于数字孪生的智慧建筑综合管控技术研究. 土木建筑工程信息技术. 2024(05): 74-79 .
    4. 张栋樑,王永志,廖少明,陆业宁. 土木工程数字孪生建造技术研究进展. 施工技术(中英文). 2023(05): 1-12 .
    5. 刘占省,武乐佳,刘子圣. 面向全生命期的多维多尺度智能建造体系. 天津大学学报(自然科学与工程技术版). 2023(12): 1295-1306 .
    6. 落巨林,张鹏,朱子康. 大型场馆双向张弦梁结构预应力施工技术分析. 建筑机械. 2023(12): 53-58 .
    7. 王炎,魏永合,刘光昕. 基于数字孪生的齿轮箱运行状态评估. 组合机床与自动化加工技术. 2022(07): 48-51 .
    8. 严肖锋,孙贤斌,邹贻权,庄子婧. 基于数字孪生的桥梁拆除多维模型. 湖北工业大学学报. 2022(05): 110-114 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 4.1 %FULLTEXT: 4.1 %META: 89.8 %META: 89.8 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.3 %其他: 2.3 %其他: 0.3 %其他: 0.3 %China: 2.8 %China: 2.8 %[]: 0.3 %[]: 0.3 %上海: 2.0 %上海: 2.0 %东莞: 0.3 %东莞: 0.3 %伊利诺伊州: 0.3 %伊利诺伊州: 0.3 %佳木斯: 0.3 %佳木斯: 0.3 %兰州: 0.8 %兰州: 0.8 %北京: 18.3 %北京: 18.3 %南京: 2.8 %南京: 2.8 %南宁: 0.3 %南宁: 0.3 %南昌: 0.8 %南昌: 0.8 %南通: 0.3 %南通: 0.3 %厦门: 0.3 %厦门: 0.3 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.8 %哈尔滨: 0.8 %唐山: 0.3 %唐山: 0.3 %天津: 1.5 %天津: 1.5 %宁波: 1.0 %宁波: 1.0 %安顺: 0.3 %安顺: 0.3 %常德: 0.3 %常德: 0.3 %广州: 2.0 %广州: 2.0 %开封: 0.5 %开封: 0.5 %张家口: 1.5 %张家口: 1.5 %徐州: 0.3 %徐州: 0.3 %德州: 0.3 %德州: 0.3 %惠州: 0.3 %惠州: 0.3 %成都: 4.6 %成都: 4.6 %昆明: 1.3 %昆明: 1.3 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.8 %杭州: 0.8 %格兰特县: 0.3 %格兰特县: 0.3 %武汉: 0.8 %武汉: 0.8 %沈阳: 1.0 %沈阳: 1.0 %泰安: 0.3 %泰安: 0.3 %济南: 1.0 %济南: 1.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.3 %温州: 0.3 %漯河: 0.5 %漯河: 0.5 %烟台: 0.3 %烟台: 0.3 %盐城: 0.3 %盐城: 0.3 %石家庄: 1.0 %石家庄: 1.0 %福州: 1.0 %福州: 1.0 %秦皇岛: 0.5 %秦皇岛: 0.5 %美国: 0.3 %美国: 0.3 %美国伊利诺斯芝加哥: 0.3 %美国伊利诺斯芝加哥: 0.3 %芒廷维尤: 2.8 %芒廷维尤: 2.8 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.3 %苏州: 0.3 %莱芜: 0.3 %莱芜: 0.3 %衡水: 0.5 %衡水: 0.5 %西宁: 22.6 %西宁: 22.6 %西安: 2.0 %西安: 2.0 %贵阳: 0.8 %贵阳: 0.8 %达州: 0.3 %达州: 0.3 %运城: 4.1 %运城: 4.1 %连云港: 0.3 %连云港: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.8 %郑州: 1.8 %重庆: 1.5 %重庆: 1.5 %长春: 0.5 %长春: 0.5 %长沙: 0.8 %长沙: 0.8 %阜新: 0.3 %阜新: 0.3 %阳泉: 1.8 %阳泉: 1.8 %青岛: 0.5 %青岛: 0.5 %马鞍山: 0.3 %马鞍山: 0.3 %黄石: 1.3 %黄石: 1.3 %其他其他China[]上海东莞伊利诺伊州佳木斯兰州北京南京南宁南昌南通厦门呼和浩特哈尔滨唐山天津宁波安顺常德广州开封张家口徐州德州惠州成都昆明晋城朝阳杭州格兰特县武汉沈阳泰安济南深圳温州漯河烟台盐城石家庄福州秦皇岛美国美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莱芜衡水西宁西安贵阳达州运城连云港邯郸郑州重庆长春长沙阜新阳泉青岛马鞍山黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (352) PDF downloads(24) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return