Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
BIAN Hanliang, ZHANG Xugang, HAN Yi, LI Beibei, ZHANG Jianwei. Remediation Tests of Zn2+ Contaminated Soil by Soybean Urease[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 67-70,66. doi: 10.13204/j.gyjzG20110216
Citation: BIAN Hanliang, ZHANG Xugang, HAN Yi, LI Beibei, ZHANG Jianwei. Remediation Tests of Zn2+ Contaminated Soil by Soybean Urease[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 67-70,66. doi: 10.13204/j.gyjzG20110216

Remediation Tests of Zn2+ Contaminated Soil by Soybean Urease

doi: 10.13204/j.gyjzG20110216
  • Received Date: 2020-11-02
  • In order to study the treatment effect of Enzyme Induced Calcium Carbonate Precipitation (EICP) on Zn2+ contaminated soil, abundant urease was extracted from soybean, mineralization of heavy metal Zn2+ with substrate induction was implemented. The different forms of Zn2+ in contaminated sand before and after remediation were extracted and detected by Tessier’s five-step continuous extraction method, and the mechanical properties of different remediation times were compared through unconfined compressive strength tests. Results showed that the extracted urease had a good activity and it could effectively catalyzed the hydrolysis of urea to form carbonate ions, which could form carbonate precipitation and mineralize Zn2+ in the induction of substrate. EICP technology could effectively reduce the content of Zn2+ in contaminated sand, and fix it in the form of carbonate, moreover, the unconfined compression strength of the repaired sand increased from 0 to 0.44 MPa after repaired 3 times. EICP technology provided a new choice for the remediation of heavy metal Zn2+ contaminated soil.
  • [1]
    邓代莉,石清清,薛圣炀,等.外源铅污染对紫色土中微生物酶活性的影响研究[J].环境污染与防治,2018,40(10):1095-1100.
    [2]
    刘松玉.污染场地测试评价与处理技术[J].岩土工程学报,2018,40(1):1-37.
    [3]
    王茂林,吴世军,杨永强,等.微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J].环境科学研究,2018,31(2):206-214.
    [4]
    ACHAL V, PAN X, ZHANG D, et al. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation[J]. Journal of Microbiol Biotechnol, 2012, 22(2):244-247.
    [5]
    TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979,51(7):844-851.
    [6]
    许朝阳,柏庭春,黄建璋,等.铁细菌修复锌污染土壤的试验研究[J].工业建筑,2016,46(6):90-93

    ,132.
    [7]
    王新花,赵晨曦,潘响亮.基于微生物诱导碳酸钙沉淀(MICP)的铅污染生物修复[J].地球与环境,2015,43(1):80-85.
    [8]
    DILRUKSHI R A N, KAWASAKI S. Effect of plant-Derived urease-induced carbonate formation on the strength enhancement of sandy soil[G]//Ecological Wisdom Inspired Restoration Engineering. Singapore:Springer, 2019:93-108.
    [9]
    KANG C H, SO J S. Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals[J]. Ecological Engineering, 2016, 97:304-312.
    [10]
    NEUPANE D, YASUHARA H, KINOSHITA N, et al. Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12):2201-2211.
    [11]
    吴林玉,缪林昌,孙潇昊,等.植物源脲酶诱导碳酸钙固化砂土试验研究[J].岩土工程学报,2020,45(4):714-720.
    [12]
    张铁军,施圆圆,孔令漪,等.黄豆豆渣中脲酶的提取精制及其影响因素研究[J].生物技术进展,2017,7(3):253-257.
    [13]
    崔有宏,罗侃,吴育凌,等.黄豆脲酶的提取与性质研究[J].甘肃科学学报,2000(1):62-66.
    [14]
    周东凯,刘莹,马学良,等.大豆脲酶的提取及其影响因素研究[J].大豆科学,2008(4):704-707.
    [15]
    邹菁,喻德忠,杨先进,等.黄豆脲酶的提取及其在缓释肥料中尿素态氮测定中的应用[J].分析科学学报,2004(2):178-180.
    [16]
    杨丰,何稼,亓永帅,等.大豆脲酶基本特性与粉质砂土的固化研究[J].河南科学,2019,37(1):112-118.
    [17]
    WHIFFIN V S. Microbial CaCO3 precipitation for the production of bio-cement[D]. Perth:Murdoch University, 2004.
  • Relative Articles

    [1]XING Wei, ZHOU Feng, ZHU Rui, CHEN Tingzhu. Study on Microbial Cure and Stabilization Effect and Mechanisms of Zinc-Contaminated Silt[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 32-42. doi: 10.3724/j.gyjzG23031904
    [2]LI Xiang, XIA Baihui, SONG Tianshun, XIE Jingjing. Screening of a Highly Effective Carbonate Mineralized Bacterium and Its Cementation in Sand Soil[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 97-103. doi: 10.13204/j.gyjzG22061309
    [3]WANG Bukang, JIA Cangqin, WANG Guihe, ZHANG Haonan. Study on Cementation Effect of Tailing Sand by Magnesium Oxide Combined with Microorganism or by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 79-83. doi: 10.13204/j.gyjzG21022609
    [4]WANG Lei, WANG Bo, LIU Zhiqiang, CHANG Xinhao. Advances of Soil Cemented by Enzyme Induced Calcium Carbonate Precipitation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 57-66. doi: 10.13204/j.gyjzG22061503
    [5]BAI Xiangyu, LI Shunqun, ZHANG Wei. STUDY ON LEACHED CHARACTERISTICS AND STABILITY OF HEAVY METAL IN CEMENTED MIXED SLUDGE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 149-153,185. doi: 10.13204/j.gyjzG21060210
    [6]ZHANG Jianwei, HAN Yi, BIAN Hanliang, HUANG Xiaoshan, WANG Xiaoju, LI Beibei. EXPERIMENTAL RESEARCH ON WIND RESISTANCE OF SILTY SOIL CEMENTED BY SOYBEAN UREASE INDUCED CALCIUM CARBONATE PRECIPITATION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 19-24,118. doi: 10.13204/j.gyjzG20021404
    [12]Li Meng Guo Hongxian Cheng Xiaohui Yang Zuan, . ISOLATION OF UREASE PRODUCING BACTERIA FROM SOIL AND LABORATORY TEST OF SANDS SOLIDIFICATION[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 8-12. doi: 10.13204/j.gyjz201507002
    [13]Chu Chengfu, Zha Fusheng, Xia Lei, Wang Lianbin. EXPERIMENT STUDY OF ENGINEERING PROPERTIES OF ZINC CONTAMINATED CLAY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 118-121. doi: 10.13204/j.gyjz201501023
    [14]Wang Yong, Cao Liwen, Zhang Xuezhe, Huo Pan, Zhao Xiaomin. EXPERIMENTAL STUDY OF MICROSTRUCTURE OF SODIUM CARBONATE CONTAMINATED REMOLDED CLAY[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 91-96. doi: 10.13204/j.gyjz201403020
    [16]Wang Yong, Cao Liwen, Wen Wenfu, Zhao Xiaomin, Wang Kuifeng. EFFECT OF DOMESTIC SODIUM AND AMMONIUM SALT POLLUTION ON HYDROPHYSICAL AND MECHANICAL PROPERTIES OF COHESIVE SOILS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 83-87. doi: 10.13204/j.gyjz201309015
    [17]Rao Weiguo, Ma Furong, Chen Rigao, Pang Yingbo, Zhang Zhihong, Xiao Zhaoran. EXPERIMENTAL RESEARCH ON THE EFFECT OF THE HEAVY METAL POLLUTANTS ON SOIL COMPACTNESS AND SHEAR STRENGTH[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 92-97. doi: 10.13204/j.gyjz201304019
    [18]Zha Fusheng, Liu Jingjing, Cui Kerui, Xu Long. ENGINEERING PROPERTIES OF SOLIDIFIED AND STABILIZED HEAVY METAL CONTAMINATED SOILS WITH CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 74-77,110. doi: 10.13204/j.gyjz201211016
    [19]Shi Lin, Zhu Dayong, Chen Longfei. EFFECTS OF PH VALUE ON LIQUID LIMIT AND PLASTIC LIMIT OF SOIL[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 70-73. doi: 10.13204/j.gyjz201107016
  • Cited by

    Periodical cited type(8)

    1. 江钇垚,陈延博,卞怡,徐文杰,詹良通,柯瀚,王清扬. 脲酶诱导矿化对铅、镉复合污染砂土固化修复的试验研究. 浙江大学学报(工学版). 2025(02): 332-341 .
    2. 李明东,张诗艾,杨远江,徐浩峰,陶雪晴,何稼. 植物脲酶诱导碳酸盐沉淀改良土体研究进展. 华侨大学学报(自然科学版). 2024(01): 1-9 .
    3. 张建伟,李想,韩智光,边汉亮. 废弃口罩加筋酶诱导碳酸盐沉淀固化砂土的抗剪强度特性. 复合材料学报. 2024(01): 426-437 .
    4. 王寅,林枫,陈萍,陈佳庆,林建涛,张淳,阮少钦,孟涛. EICP稳定化生活垃圾焚烧飞灰试验研究. 环境科学学报. 2024(08): 416-425 .
    5. 黄鋆溢,吴大志,顾运韬,王喆. 建筑垃圾再生砂酶促碳酸钙加固试验研究. 水利规划与设计. 2024(09): 119-123+128 .
    6. 季晓莲,李松. 固体废弃物材料的改性及对重金属修复实验. 化学工程师. 2024(09): 5-8+94 .
    7. 陆爱灵,朱东云,张宏,曹函,张婧. EICP联合生物炭固化修复重金属污染土试验. 环境工程. 2023(08): 176-180 .
    8. 边汉亮,吉培瑞,王俊岭,张旭钢,徐向春. EICP修复重金属污染土的环境耐久性研究. 岩土力学. 2023(10): 2779-2788 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 90.1 %META: 90.1 %PDF: 0.5 %PDF: 0.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.5 %其他: 11.5 %东莞: 1.0 %东莞: 1.0 %北京: 0.5 %北京: 0.5 %十堰: 0.5 %十堰: 0.5 %南通: 0.5 %南通: 0.5 %嘉兴: 1.0 %嘉兴: 1.0 %天津: 0.5 %天津: 0.5 %宜春: 0.5 %宜春: 0.5 %宣城: 1.6 %宣城: 1.6 %常德: 0.5 %常德: 0.5 %广州: 7.3 %广州: 7.3 %张家口: 1.6 %张家口: 1.6 %扬州: 2.6 %扬州: 2.6 %新乡: 4.7 %新乡: 4.7 %晋城: 0.5 %晋城: 0.5 %格兰特县: 0.5 %格兰特县: 0.5 %武汉: 0.5 %武汉: 0.5 %深圳: 0.5 %深圳: 0.5 %温州: 1.0 %温州: 1.0 %湛江: 1.0 %湛江: 1.0 %漯河: 2.6 %漯河: 2.6 %珠海: 0.5 %珠海: 0.5 %福州: 1.6 %福州: 1.6 %芒廷维尤: 44.5 %芒廷维尤: 44.5 %芝加哥: 1.0 %芝加哥: 1.0 %西宁: 4.7 %西宁: 4.7 %贵阳: 0.5 %贵阳: 0.5 %运城: 4.2 %运城: 4.2 %郑州: 1.0 %郑州: 1.0 %香港: 0.5 %香港: 0.5 %其他东莞北京十堰南通嘉兴天津宜春宣城常德广州张家口扬州新乡晋城格兰特县武汉深圳温州湛江漯河珠海福州芒廷维尤芝加哥西宁贵阳运城郑州香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (171) PDF downloads(1) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return