Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Chenxia, ZHANG Duo, CAO Fubo, WU Yaxuan, YE Chang, LI Lan. Research on Mechanical Properties and Damage of Recycled Concrete After Being Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 199-207. doi: 10.13204/j.gyjzG20091704
Citation: WANG Chenxia, ZHANG Duo, CAO Fubo, WU Yaxuan, YE Chang, LI Lan. Research on Mechanical Properties and Damage of Recycled Concrete After Being Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 199-207. doi: 10.13204/j.gyjzG20091704

Research on Mechanical Properties and Damage of Recycled Concrete After Being Subjected to Freeze-Thaw Cycles

doi: 10.13204/j.gyjzG20091704
  • Received Date: 2020-09-17
    Available Online: 2022-07-23
  • Publish Date: 2022-07-23
  • In order to study the effects of recycled concrete with 100% replacement rate of coarse aggregate and common concrete on mechanical properties and frost resistance, an experimental study was conducted by changing the number of freeze-thaw cycles. The freeze-thaw damage model was established by analyzed loss rate of compressive strength, mass and dynamic elastic modulus, and also aimed at the anti-freeze durability lives of recycled concrete was predicted for the Inner Mongolia area. The result of research shows that the compressive strength and splitting tensile strength of recycled concrete was inverse to the number of freeze-thaw cycles. For every 50 additional freeze-thaw cycles, the average compressive strength decreased by 33.1%, and the average splitting tensile strength decreased by 33%. In the early stage of the freezing and thawing, the ordinary concrete and recycled concrete anti-freeze performance were similar, but the performance degradation and the recycled concrete degradation are greater than ordinary concrete with the increase of freeze-thaw cycles. The establishment of freeze-thaw damage model can intuitive clearly reflect the mechanical properties of recycled concrete macroscopic changes because of the higher fitting accuracy of dynamic modulus of elasticity loss of freeze-thaw damage model.
  • [1]
    肖建庄,再生混凝土[M].北京:中国建筑工业出版社, 2008.
    [2]
    王宇,钟山.冻融循环再生混凝土基本力学性能试验研究[J].科学技术创新,2018(34):98-99.
    [3]
    伍君勇,朱平华.再生混凝土抗冻性研究进展[J].混凝土,2013(4):15-19.
    [4]
    ROUMIANA Z, BUYLE-BODIN F, WIRQUIN E. Frost resistance of recycled aggregate concrete[J]. Cement and Concrete Research, 2004, 34(10):1927-1932.
    [5]
    DE OLIVEIRA M B, VAZQUEZ E. The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete[J]. Waste Management,1996,16(1):113-117.
    [6]
    邹超英,范玉辉,胡琼.冻融循环后再生混凝土基本力学性能试验[J].建筑结构,2010,40(增刊1):434-438.
    [7]
    HUDA S B. ALAM M S. Mechanical and freeze-thaw durability properties of recycled aggregate concrete made with recycled coarse aggregate[J]. Journal of Materials in Civil Engineering,2015,27(10). DOI:10.1061/(ASCE) MT.1943-5533,0001237.
    [8]
    周宇,郑秀梅,李广军,等.再生骨料混凝土抗冻性能试验研究[J].低温建筑技术,2013,35(12):14-16.
    [9]
    冯超朋,张自荣,肖建庄.冻融循环作用对再生混凝土力学性能的影响[J].长春工程学院学报(自然科学版),2020,21(3):18-23.
    [10]
    王晨霞,钤建勋,王浩,等.冻融损伤对再生混凝土耐久性及与钢筋粘结性能分析[J].重庆大学学报,2016(2):131-139.
    [11]
    魏璟璟.全组分废弃混凝土制备再生水泥的试验研究[D].大连:大连理工大学,2011:80.
    [12]
    王晨霞,刘路,曹芙波,等.冻融循环后再生混凝土力学性能试验研究[J].建筑结构学报,2020,41(12):193-202.
    [13]
    高翔.骨料添加对再生混凝土抗冻性能的影响[J].粉煤灰综合利用,2019(2):39-41,45.
    [14]
    陈爱玖,章青,王静,等.再生混凝土冻融循环试验与损伤模型研究[J].工程力学,2009,26(11):102-107.
    [15]
    刘崇熙,汪在芹.坝工混凝土耐久寿命的衰变规律[J].长江科学院院报,2000(2):18-21.
    [16]
    尚永康.再生混凝土抗冻性及力学性能试验研究[D].哈尔滨:哈尔滨工业大学,2010:101.
    [17]
    ]张雷顺,王娟,黄秋风,等.再生混凝土抗冻耐久性试验研究[J].工业建筑,2005,45(9):64-66,45.
    [18]
    关利娟.再生骨料混凝土试验研究及可靠性分析[D].兰州:兰州理工大学,2018:80.
    [19]
    李金玉,彭小平,邓正刚,等.混凝土抗冻性的定量化设计[J].混凝土,2000(12):61-65.
  • Relative Articles

    [1]ZHOU Jinzhi, FU Tiantian, SHUANG Ziyang, ZHOU Chenxu, ZHOU Yadong. Experimental Research on Mechanical Properties of Recycled Concrete Immersed in Chloride Solution[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 187-193. doi: 10.13204/j.gyjzG20101007
    [2]MA Tengfei, CHEN Zhihua, DU Yansheng. Axial Compression Behaviour of L-Shaped Column Composed of Recycled Aggregate Concrete-Filled Square Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 1-6. doi: 10.13204/j.gyjzG22031905
    [3]HOU Yufei, ZHENG Chuanlei, ZHAO Yadi, JIN Baohong. Effect of Sulfate Freeze-Thaw on Mechanical Properties of Self-Compacting Recycled Coarse Aggregate Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 189-198,6. doi: 10.13204/j.gyjzG22111001
    [4]XU Jinxiao, XIAO Jianzhuang, LUO Surong, ZHANG Qingtian. Research Progress and Prospect of Fiber-Recycled Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 10-17,31. doi: 10.13204/j.gyjzG20112711
    [5]LIU Yejin, ZHOU Changshun. Study on Mechanical Properties and Microstructure of Recycled Aggregate Concrete Containing Steel Slag Powder and Metakaolin[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 133-138,157. doi: 10.13204/j.gyjzG21062503
    [6]Zhang Yi, Zhao Shenghua, Chen Xing. EXPERIMENTAL RESEARCH ON THE FLEXURAL BEHAVIOR OF RECYCLED CONCRETE T-SHAPED CROSS-SECTION SUPERPOSED BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 52-55.
    [7]Chen Zongping, Zhou Wenxiang, Xue Jianyang, Li Ling. TEST OF RECYCLED AGGREGATE CONCRETE FILLED SQUARE STEEL TUBE COLUMN SUBJECTED TO ECCENTRIC COMPRESSION AFTER HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 25-31. doi: 10.13204/j.gyjz2001411005
    [8]Chen Zongping, Chen Junrui, Xue Jianyang, Chen Yuliang. EXPERIMENTAL STUDY OF MECHANICAL BEHAVIOR OF STEEL AND RECYCLED AGGREGATE CONCRETE AFTER HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 1-4. doi: 10.13204/j.gyjz2001411001
    [9]Chen Zongping, Xu Jinjun, Huang Kaiwang, Su Yisheng. TEST STUDY ON BOND PROPERTIES BETWEEN HIGH STRENGTH STEEL BAR AND RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 16-20. doi: 10.13204/j.gyjz201311004
    [10]Hu Bo, Liu Bingkang, Wang Chenggang, Yu Chao. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCES OF A TWO-STOREY REINFORCED RECYCLED AGGREGATES CONCRETE FRAME UNDER LOW-CYCLE REPEATED LOAD[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 53-58. doi: 10.13204/j.gyjz201309010
    [11]Du Yuanfang, Wang Sheliang, Zhao Qin, Fan Yujiang. SHAKING TABLE TEST OF ENHANCED RECYCLED AGGREGATE CONCRETE FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 30-33,44. doi: 10.13204/j.gyjz201311007
    [12]Chen Zongping, Chen Yuliang, Qin Wenyue, Xue Jianyang, Qi Cheng. TEST OF FLEXURAL BEHAVIOR AND ULTIMATE CAPACITY CALCULATION OF STEEL REINFORCED RECYCLED AGGREGATE CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 11-16,29. doi: 10.13204/j.gyjz201309002
    [13]Chen Zongping, Yang Yibin, Zheng Shufang, Su Yisheng. EXPERIMENTAL RESEARCH ON MECHANICAL PROPERTY OF REINFORCED RECYCLED AGGREGATE COARSE CONCRETE FLOOR-SLAB[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 52-56,127. doi: 10.13204/j.gyjz201305012
    [14]Xue Jianyang, Luo Zheng, Yuan Chengfang, Yue Weitong. EXPERIMENTAL INVESTIGATION FOR MECHANICAL PERFORMANCE AND DURABILITY OF RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(10): 91-96. doi: 10.13204/j.gyjz201310020
    [15]Zhang Fengjian, Bai Guoliang, Feng Xiangdong, Liu Chao, Li Jian, Quan Zonggang, Yang Zhengliang. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF RECYCLED CONCRETE HOLLOW BLOCK WALLS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 37-43. doi: 10.13204/j.gyjz201204008
    [16]Wang Xiaohan, Liu Bingkang, Lu Guo1 Chen Lihua, . EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF RECYCLED CONCRETE MEMBERS SUBJECT TO REVERSED MOMENT,SHEAR AND TORSION[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 21-24,117. doi: 10.13204/j.gyjz201204005
    [17]Li XuPing. LONG-TERM MECHANICAL PROPERTIES OF RECYCLED AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(10): 80-84. doi: 10.13204/j.gyjz20081020
    [18]Yang You-fu. THEORETICAL RESEARCH ON LOAD-DEFORMATION RELATIONS OF RECYCLED AGGREGATE CONCRETE-FILLED STEEL TUBULARMEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 1-6,124. doi: 10.13204/j.gyjz200712001
    [19]Zhang Leishun, Zhang Xiaolei, Yan Guoxin. EXPERIMENTAL RESEARCH ON THE SHEARING CAPACITY OF RECYCLED CONCRETE BEAMS WITHOUT STIRRUPS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(9): 57-61. doi: 10.13204/j.gyjz200709012
    [20]Zhang Leishun, Wang Juan, Huang Qiufeng, Deng Yu. EXPERIMENTAL STUDY ON FROST-RESISTANT DURABILITY OF RECYCLED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 64-66,45. doi: 10.13204/j.gyjz200509017
  • Cited by

    Periodical cited type(14)

    1. 王会,郑中元. 盐冻循环下粉煤灰再生混凝土性能劣化规律及寿命预测. 工程建设. 2024(02): 30-35 .
    2. 龚皓. 玄武岩纤维/树脂基复合混凝土的力学性能和抗冻性能研究. 功能材料. 2024(02): 2148-2154 .
    3. 钟楚珩,范祖伟,周金枝,施佳楠. 基于响应面法和Weibull分布的不锈钢纤维再生混凝土抗冻性能研究. 水利水电技术(中英文). 2024(02): 50-61 .
    4. 武金,王睿,刘怡媛,张进增,闫猛. 高寒地区混凝土抗冻耐久性及损伤模型. 西安工业大学学报. 2023(02): 127-132 .
    5. 罗恒勇,江俊松,赵康. 基于能量耗散冻融循环下玄武岩纤维再生混凝土损伤特性. 复合材料科学与工程. 2023(05): 86-93 .
    6. 侯玉飞,郑传磊,赵亚娣,金宝宏. 硫酸盐冻融对自密实再生粗骨料混凝土力学性能的影响. 工业建筑. 2023(07): 189-198+6 . 本站查看
    7. 刘昱,周静海,吴迪,康天蓓,于杭琳. 冻融循环下废弃纤维再生混凝土与钢筋的黏结性能. 建筑材料学报. 2023(09): 1031-1038 .
    8. 王会. 冻融与复合盐耦合作用下活化煤矸石粉混凝土劣化规律. 连云港职业技术学院学报. 2023(02): 1-5 .
    9. 于洋. 碳酸盐-冻融耦合作用下建筑混凝土的损伤劣化. 黑龙江科技大学学报. 2022(01): 71-75 .
    10. 杨承谞,曹伟,赵若宇,李亮,张兴忠,张文刚. 再生骨料在路缘石中的应用研究. 山东理工大学学报(自然科学版). 2022(04): 59-64 .
    11. 钟楚珩,龙宇华,周金枝,吴维熙. 再生混凝土疲劳可靠度及疲劳寿命预测. 工业建筑. 2022(04): 140-145+83 . 本站查看
    12. 龙一飞,潘婵,郭晓琴,李扬薇. 冻融循环下橡胶混凝土动态力学特性试验研究. 工业建筑. 2022(04): 163-170+139 . 本站查看
    13. 刘恩铭,林明强,谢群. 再生粗骨料混凝土抗冻性能研究进展. 硅酸盐通报. 2022(09): 2963-2978 .
    14. 刘露,何康. 冻融作用下短切玄武岩纤维混凝土损伤演化及动态力学性能研究. 复合材料科学与工程. 2022(10): 13-19 .

    Other cited types(21)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.9 %FULLTEXT: 16.9 %META: 81.9 %META: 81.9 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.5 %其他: 23.5 %其他: 0.2 %其他: 0.2 %China: 0.2 %China: 0.2 %上海: 0.4 %上海: 0.4 %东莞: 3.1 %东莞: 3.1 %保定: 0.2 %保定: 0.2 %兰州: 0.6 %兰州: 0.6 %包头: 0.2 %包头: 0.2 %北京: 2.1 %北京: 2.1 %十堰: 0.4 %十堰: 0.4 %南京: 2.3 %南京: 2.3 %南宁: 1.0 %南宁: 1.0 %南通: 0.2 %南通: 0.2 %厦门: 0.4 %厦门: 0.4 %台州: 0.2 %台州: 0.2 %咸阳: 0.6 %咸阳: 0.6 %哈尔滨: 0.8 %哈尔滨: 0.8 %嘉兴: 1.2 %嘉兴: 1.2 %圣保罗: 1.0 %圣保罗: 1.0 %天津: 1.2 %天津: 1.2 %安康: 0.4 %安康: 0.4 %宜昌: 0.2 %宜昌: 0.2 %宜春: 0.6 %宜春: 0.6 %宣城: 1.0 %宣城: 1.0 %常州: 0.6 %常州: 0.6 %常德: 0.2 %常德: 0.2 %广州: 0.4 %广州: 0.4 %廊坊: 0.2 %廊坊: 0.2 %延安: 0.2 %延安: 0.2 %张家口: 0.6 %张家口: 0.6 %成都: 0.2 %成都: 0.2 %扬州: 0.8 %扬州: 0.8 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.9 %杭州: 2.9 %格兰特县: 0.6 %格兰特县: 0.6 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %淄博: 1.2 %淄博: 1.2 %温州: 0.4 %温州: 0.4 %湘潭: 0.2 %湘潭: 0.2 %漯河: 2.9 %漯河: 2.9 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.2 %烟台: 0.2 %焦作: 0.6 %焦作: 0.6 %石家庄: 0.6 %石家庄: 0.6 %芒廷维尤: 23.3 %芒廷维尤: 23.3 %芝加哥: 2.5 %芝加哥: 2.5 %苏州: 0.8 %苏州: 0.8 %衡水: 0.2 %衡水: 0.2 %衢州: 0.4 %衢州: 0.4 %西宁: 8.9 %西宁: 8.9 %西安: 1.0 %西安: 1.0 %贵阳: 0.6 %贵阳: 0.6 %运城: 2.1 %运城: 2.1 %郑州: 2.5 %郑州: 2.5 %长沙: 0.6 %长沙: 0.6 %长治: 0.2 %长治: 0.2 %青岛: 0.2 %青岛: 0.2 %其他其他China上海东莞保定兰州包头北京十堰南京南宁南通厦门台州咸阳哈尔滨嘉兴圣保罗天津安康宜昌宜春宣城常州常德广州廊坊延安张家口成都扬州晋城朝阳杭州格兰特县武汉沈阳洛阳济南淄博温州湘潭漯河濮阳烟台焦作石家庄芒廷维尤芝加哥苏州衡水衢州西宁西安贵阳运城郑州长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (396) PDF downloads(6) Cited by(35)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return