Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Xinling, Kang Xiandong, Li Ke, Huang Weidong. FATIGUE DAMAGE MECHANISM OF HRBF500 RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 45-48. doi: 10.13204/j.gyjz201311011
Citation: LIN Yongjun, XU Wenqiang, ZHANG Xianzhao, LIU Kaiqi. SHEAR MECHANISM AND BOND STRENGTH CALCULATION OF NEW-TO-OLD CONCRETE INTERFACE WITH ANCHOR BARS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 72-83. doi: 10.13204/j.gyjzG20080511

SHEAR MECHANISM AND BOND STRENGTH CALCULATION OF NEW-TO-OLD CONCRETE INTERFACE WITH ANCHOR BARS

doi: 10.13204/j.gyjzG20080511
  • Received Date: 2020-08-05
    Available Online: 2021-10-27
  • The shear bond performance of new-to-old concrete interface with anchor bars is different from that of new-to-old concrete interface without anchor bars. The existing calculation equations for the shear strength of new-to-old concrete interface are mostly based on shear friction theory or fitting the test data. The concrete structure design codes for different countries also propose their shear strength calculation formulas. A total of 85 test data of new-to-old concrete interface with anchor bars were used to verify the applicability for the existing typical recipes. The results showed that these methods were either too conservative or lead to structural unsafe. According to the stress characteristics of the new-to-old concrete interface with anchor bars, the spring-friction block model for the shear transfer of new-to-old concrete interface with anchor bars was established. Meanwhile, the mechanism of shear transfer in the whole process of the interface was thoroughly analyzed by combining with the existing shear test load-slip curve. The results indicated that the shear bearing capacity of new-to-old concrete interface with anchor bars could be divided into four parts:the cohesive force of the new-to-old concrete interface, the mechanical occlusal force of groove, the pin bolt force of anchor bars, and the friction force. Based on the theoretical analysis of the calculation methods of four parts, the calculation formula for the shear strength of new-to-old concrete interface with anchor bars was proposed. The applicability of the proposed formula for calculating the shear bond strength of new-to-old concrete interface with anchor bars was verified by using 20 sets of test data. The average value and standard deviation of the ratio of experimental value to the calculated value were 1.182 and 0.305, respectively. Compared with the existing calculation methods, it was shown that the calculated results of the equation proposed in the paper were in the best agreement with the experimental results, and the discreteness was relatively low.
  • [1]
    赵志方, 赵国藩, 刘健, 等.新老混凝土黏结抗拉性能的试验研究[J]. 建筑结构学报, 2001, 22(2):51-56.
    [2]
    肖成志, 田稳苓, 刘波,等.设置界面构造锚筋的新老混凝土黏结性能试验研究[J]. 建筑结构学报, 2011, 32(1):75-81.
    [3]
    JULIO E N B S, DIAS-DA-COSTA D, BRANCO F A B, et al. Accuracy of Design Code Expressions for Estimating Longitudinal Shear Strength of Strengthening Concrete Overlays[J]. Engineering Structures, 2010, 32(8):2387-2393.
    [4]
    HARRIES K A, ZENO G, SHAHROOZ B. Toward an Improved Understanding of Shear-Friction Behavior[J]. ACI Structural Journal, 2012, 109(6):835-844.
    [5]
    ANDERSON A R. Composite Designs in Precast and Cast-in-Place Concrete[J]. Progressive Architecture, 1960, 41(9):172-179.
    [6]
    HOFBECK J A, IBRAHIM I O, MATTOCK A H. Shear Transfer in Reinforced Concrete[J]. ACI Journal, 1969, 66(2):119-128.
    [7]
    ZIA P. Torsional Strength of Prestressed Concrete Members[J]. ACI Journal, 1961, 57(10):1337-1360.
    [8]
    KAHN L F, MITCHELL A D. Shear Friction Tests with High-Strength Concrete[J]. ACI Structure Journal, 2002, 99(1):98-103.
    [9]
    郑建岚, 陈锋. 自密实混凝土与老混凝土黏结剪切强度的塑性极限分析[J]. 工程力学, 2008, 25(8):164-168.
    [10]
    王振领. 新老混凝土黏结理论与试验及在桥梁加固工程中的应用研究[D]. 成都:西南交通大学, 2007.
    [11]
    SANTOS P M D, JULIO E N B S. A State-of-the-Art Review on Shear-Friction[J]. Engineering Structures, 2012, 45(12):435-448.
    [12]
    ROBERT A B, RAMON L C, JAMES O J. Shear Transfer Across New and Existing Concrete Interface[J]. ACI Structural Journal, 1989, 86(4):383-393.
    [13]
    BIRKELAND P W, BIRKELAND H W. Connections in Precast Concrete Construction[J]. ACI Journal Proceedings, 1966, 63(3):345-368.
    [14]
    WALRAVEN J, FRÉNAY J, PRUIJSSERS A. Influence of Concrete Strength and Load History on the Shear Friction Capacity of Concrete Members[J]. PCI Journal, 1987, 32(1):66-84.
    [15]
    LOOV R E, PATNAIK A K. Horizontal Shear Strength of Composite Concrete Beams with a Rough Interface[J]. PCI Journal, 1994, 39(1):48-69.
    [16]
    RANDL N. Investigations on Transfer of Forces Between Old and New Concrete at Different Joint Roughness[D]. Innsbruck:University of Innsbruck, 1997.
    [17]
    叶果. 新老混凝土界面抗剪性能研究[D]. 重庆:重庆大学, 2011.
    [18]
    JULIO E N B S, BRANCO F A, SILVA V D. Concrete-to-Concrete Bond Strength Influence of the Roughness of the Substrate Surface[J]. Construction and Building Materials, 2004, 18(9):675-681.
    [19]
    张雷顺, 闫国新, 张晓磊, 等. 沟槽式新老混凝土黏结面抗剪强度试验研究[J]. 郑州大学学报(工学版), 2006, 27(2):24-28.
    [20]
    常鹏飞. 新旧混凝土界面的连接方法及动力性能研究[D]. 西安:西安科技大学, 2012.
    [21]
    邢强. 新旧混凝土界面的连接方法及受力性能研究[D].西安:西安科技大学, 2012.
    [22]
    中华人民共和国城乡和住房建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2015.
    [23]
    American Concrete Institute Committee. Building Code Requirements for Structural Concrete and Commentary on Building Code Requirements for Structural Concrete:ACI 318-14[S]. Farmington Hills:American Concrete Institute, 2014.
    [24]
    Canadian Standards Association. Design of Concrete Structures:CSA A23.3-14[S]. Toronto:CSA 2014.
    [25]
    European Committee for Standardization. Design of Concrete Structures:Eurocode 2[S]. London:CEN, 2008.
    [26]
    International Federation for Structural Concrete. fib Model Code 2010, Model Code for Concrete Structures[S]. Lausanne:FIB, 2010.
    [27]
    AASHTO LRFD 2014, AASHTO LRFD Bridge Design Specifications[S]. Washington:American Association of State Highway and Transportation Officials, 2014.
    [28]
    潘传银, 石雪飞, 周可攀. 新、老混凝土黏结抗剪强度试验[J]. 交通科学与工程, 2014, 30(2):6-12.
    [29]
    黄璐. 植筋法新旧混凝土界面剪切强度的实用计算公式[C]//第25届全国结构工程学术会议论文集(第Ⅲ册). 包头:2016.
    [30]
    刘传奇. 新旧混凝土界面黏贴机理试验研究[D]. 西安:长安大学, 2014.
    [31]
    XIAO J Z, SUN C H, LANGE D A. Effect of Joint Interface Conditions on Shear Transfer Behavior of Recycled Aggregate Concrete[J]. Construction and Building Materials, 2016, 105(1):343-355.
    [32]
    王二花. 植筋法新老混凝土黏结面剪切性能试验研究[D]. 郑州:郑州大学, 2006.
    [33]
    胡铁明, 黄承逵, 陈小锋. 构造钢筋影响下新老混凝土结合面抗剪试验研究[J]. 混凝土, 2009, 233(3):26-28.
    [34]
    江志伟. 沟槽和植筋新旧混凝土界面抗剪性能试验研究[D]. 广州:广东工业大学, 2014.
    [35]
    HE Y, ZHANG X, HOOTON R D, et al. Effects of Interface Roughness and Interface Adhesion on New-to-Old Concrete Bonding[J]. Construction and Building Materials, 2017, 151(5):582-590.
    [36]
    SANTOS P M D, JULIO E N B S. A State-of-the-Art Review on Roughness Quantification Methods for Concrete Surfaces[J]. Construction and Building Materials, 2013, 38(1):912-923.
    [37]
    宋国华, 霍达, 王东炜, 等. 装配式大板结构竖向齿槽接缝受剪承载力设计[J]. 土木工程学报, 2003, 36(11):61-64.
    [38]
    张锡治, 马健, 韩鹏, 等. 装配式剪力墙齿槽式连接受剪性能研[J]. 建筑结构学报, 2017, 38(11):93-100.
    [39]
    DULACSKA H. Dowel Action of Reinforcement Crossing Cracks in Concrete[J]. ACI Journal, 1972, 69(12):754-757.
    [40]
    RANDL N. Design Recommendations for Interface Shear Transfer in Fib Model Code 2010[J]. Structural Concrete, 2013, 14(3):230-241.
    [41]
    MANSUR M A, VINAYAGAM T, TAN K H. Shear Transfer Across a Crack in Reinforced High-Strength Concrete[J]. ASCE Journal Materials Civil Engineering, 2008, 20(4):294-302.
    [42]
    方鑫. 沟槽植筋新旧混凝土(C30)结合面抗剪性能试验研究[D]. 广州:广东工业大学, 2016.
  • Relative Articles

    [1]ZHANG Xue, MEN Jinjie, RONG Qiang, QIAO Dehao. Research on Prediction Models of Flexural Capacity of Corroded RC Beams Based on Ensemble Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 128-137. doi: 10.3724/j.gyjzG24012901
    [2]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [3]SONG Songke, DU Taoming, YANG Tao, ZHANG Qinghua. Coupling Effect Mechanism of Pavement Characteristics on Fatigue Damage of Orthotropic Steel Decks[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 229-237. doi: 10.3724/j.gyjzG21122303
    [4]HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
    [5]ZHU Linxuan, ZHANG Mingyi, CHEN Chaoran, ZHOU Zhijun, WANG Miaomiao. Prediction of Carbonation Depth of Reinforced Concrete Beams Under Cyclic Flexural Loads[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 139-143,212. doi: 10.13204/j.gyjzG21112513
    [6]LI Bin, LUO Yanyan, LI Xingbo. Seismic Performance Test and Finite Element Analysis of Monolithic Precast Shear Wall with Partially-Connected Vertical Distributed Steel Bars[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 51-59,23. doi: 10.13204/j.gyjzG21040601
    [7]HU Wenhao, GUO Rui, REN Yu. Study on the Flexural Capacity of RC Beams Strengthened with FRP Grids Based on the Bond-Slip Cohesive Model[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 216-226. doi: 10.13204/j.gyjzG21062512
    [8]CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
    [9]GAO Ziqi, ZHANG Jintao, ZHANG Hao, HAO Han, GUO Rui. FINITE ELEMENT ANALYSIS OF FLEXURAL BEHAVIOR OF DAMAGED RC BEAMS REINFORCED BY FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 44-50,43. doi: 10.13204/j.gyjzG20110321
    [10]Zhu Chenfei, Liu Xiaojun, Li Wenzhe, Wu Yonggen, Liu Qingtao. STUDY OF FREEZE-THAW DURABILITY AND DAMAGE MODEL OFHYBRID FIBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 10-14. doi: 10.13204/j.gyjz201502003
    [11]Wang Zheng, Shi Qingxuan. COMPARATIVE ANANLYSIS OF SHEAR CAPACITY FOR REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 105-109,138. doi: 10.13204/j.gyjz201307024
    [12]Wang Yutian, Zhang Wei, Jiang Fuxiang. EXPERIMENT ON THE BENDING PERFORMANCE OF CFRP REINFORCED PRE-DAMAGED REINFORCED CONCRETE BEAM UNDER SEAWATER ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 99-103. doi: 10.13204/j.gyjz201302020
    [13]Jia Jinqing, Zhang Lihua, Meng Gang. CALCULATION METHOD FOR DAMAGE INDEX OF RC BEAM UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 54-58. doi: 10.13204/j.gyjz201208012
    [14]Liao Yanfen, Qi Yaqing, Ma Xiaoqian. NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BEAMS IN FIRE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 31-37. doi: 10.13204/j.gyjz201107007
    [15]Wang Xinling, Chen Qingping, Du Lin. EXPERIMENTAL RESEARCH ON HRBF500 HIGH STRENGTH RC BEAMS FOR HIGH SPEED RAILWAY UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 18-21,26. doi: 10.13204/j.gyjz201011006
    [16]Jiang Chaowen, Zhang Jiwen. NON-LINEAR ANALYSIS OF CONCRETE BEAM-COLUMN ASSEMBLIES REINFORCED WITH FINE GRAINED HIGH STRENGTH STEEL BARS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 40-44. doi: 10.13204/j.gyjz200911010
    [17]Zhao Yong, Wang Xiaofeng, Su Xiaozu, Cheng Zhijun. EXPERIMENTAL RESEARCH ON THE EFFECTS OF SURFACE REINFORCEMENT ON CRACK SPACING AND WIDTH OF REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 29-32. doi: 10.13204/j.gyjz200911008
    [18]Hu Ling, Yang Yongxin, Wang Quanfeng, Xu Yuye, Wang Jiangen. EXPERIMENTAL STUDY ON BOND ANCHORAGE PROPERTIES OF HRBF500 STEEL BARS IN CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 13-16,44. doi: 10.13204/j.gyjz200911004
    [19]Liu Ronggui, Fu Kai, Yan Tingcheng. THE FATIGUE PROPERTIES OF PRE-STRESSED CONCRETE STRUCTURE UNDER THE CONDITIONS OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 75-78. doi: 10.13204/j.gyjz200811018
    [20]Ouyang Yu, Wang Peng, Zhang Yunchao. CALCULATION AND ANALYSIS OF FLEXURAL AND SHEAR CAPACITY OF RC BEAMS STRENGTHENED WITH BFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 24-27. doi: 10.13204/j.gyjz200706007
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.9 %FULLTEXT: 6.9 %META: 88.8 %META: 88.8 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.3 %其他: 5.3 %China: 0.6 %China: 0.6 %Taiwan, China: 1.2 %Taiwan, China: 1.2 %[]: 1.6 %[]: 1.6 %上海: 3.4 %上海: 3.4 %东莞: 1.6 %东莞: 1.6 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.9 %兰州: 0.9 %北京: 14.7 %北京: 14.7 %南京: 3.1 %南京: 3.1 %南充: 0.3 %南充: 0.3 %南宁: 0.6 %南宁: 0.6 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %厦门: 0.6 %厦门: 0.6 %台州: 0.3 %台州: 0.3 %合肥: 3.1 %合肥: 3.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %墨尔本: 0.3 %墨尔本: 0.3 %大连: 1.9 %大连: 1.9 %天津: 1.6 %天津: 1.6 %太原: 0.3 %太原: 0.3 %宁波: 0.6 %宁波: 0.6 %宜昌: 0.3 %宜昌: 0.3 %广州: 2.5 %广州: 2.5 %廊坊: 0.3 %廊坊: 0.3 %延安: 0.3 %延安: 0.3 %张家口: 1.9 %张家口: 1.9 %成都: 1.2 %成都: 1.2 %昆明: 0.3 %昆明: 0.3 %朝阳: 0.6 %朝阳: 0.6 %杭州: 3.4 %杭州: 3.4 %武汉: 3.4 %武汉: 3.4 %江门: 0.3 %江门: 0.3 %沈阳: 1.2 %沈阳: 1.2 %洛阳: 0.6 %洛阳: 0.6 %济南: 0.3 %济南: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.9 %温州: 0.9 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.3 %潍坊: 0.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 1.6 %石家庄: 1.6 %福州: 1.6 %福州: 1.6 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 11.6 %芒廷维尤: 11.6 %芝加哥: 2.5 %芝加哥: 2.5 %苏州: 0.3 %苏州: 0.3 %英国: 0.6 %英国: 0.6 %蚌埠: 0.3 %蚌埠: 0.3 %衡水: 0.9 %衡水: 0.9 %西宁: 2.2 %西宁: 2.2 %西安: 2.5 %西安: 2.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 1.2 %贵阳: 1.2 %运城: 3.7 %运城: 3.7 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.6 %郑州: 1.6 %重庆: 1.6 %重庆: 1.6 %铁岭: 0.3 %铁岭: 0.3 %长沙: 0.9 %长沙: 0.9 %雅安: 0.9 %雅安: 0.9 %青岛: 0.3 %青岛: 0.3 %首尔: 0.6 %首尔: 0.6 %其他ChinaTaiwan, China[]上海东莞佛山保定兰州北京南京南充南宁南昌南通厦门台州合肥哈尔滨嘉兴墨尔本大连天津太原宁波宜昌广州廊坊延安张家口成都昆明朝阳杭州武汉江门沈阳洛阳济南深圳温州漯河潍坊焦作石家庄福州绵阳芒廷维尤芝加哥苏州英国蚌埠衡水西宁西安诺沃克贵阳运城邯郸郑州重庆铁岭长沙雅安青岛首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return