Cui Yanqi. ANALYSIS OF ENERGY-SAVING IN THE RURAL HOUSING CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 61-63. doi: 10.13204/j.gyjz201008014
Citation:
CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION , 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
Cui Yanqi. ANALYSIS OF ENERGY-SAVING IN THE RURAL HOUSING CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 61-63. doi: 10.13204/j.gyjz201008014
Citation:
CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION , 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES
1. Hebei University of Architecture, Zhangjiakou 075000, China;
2. Beiwang Construction Group Co., Ltd., Chengde 067000, China;
3. Hebei Key Laboratory of Diagnosis, Reconstruction and Anti-Disaster of Civil Engineering, Zhangjiakou 075000, China
Received Date: 2020-07-24
Available Online:
2021-09-16
Publish Date:
2021-09-16
Abstract
To explore the laws of fatigue damage for cement-solidified soil under the action of freeze-thaw cycle, the failure modes of strength for cement-solidified soil were defined based on analysis of the stress-strain curves for cement-solidified soil with different mass fractions of cement mix. The development processes of internal defects in freeze-thaw damage were analyzed, combined with the results of freeze-thaw damage tests. Taking elastic moduli as damage indexes, a freeze-thaw damage model of the cement-solidified soil characterized by elastic moduli was proposed. According to the model, the test data were fitted and the values of test parameters were obtained, the proposed model was checked by test results from other regions and in different test conditions, the results showed that the model could reflected the laws of fatigue damage for cement-solidified soil under the action of freeze-thaw cycle.
References
[1]
黄晓明. 路面基层路面工程[M].5版.北京:人民交通出版社股份有限公司, 2017.
[2]
梁仕华, 曾伟华.干湿循环条件下水泥粉煤灰固化南沙淤泥土试验研究[J]. 工业建筑, 2018, 48(7):83-86
, 43.
[3]
崔宏环, 裴国陆.含赤泥土壤固化剂改良粉质黏土的路用性能研究[J]. 中外公路, 2018, 38(3):301-306.
[4]
王天亮, 刘建坤, 田亚护.冻融作用下水泥及石灰改良土静力特性研究[J]. 岩土力学, 2011, 32(1):193-198.
[5]
童小东, 龚晓南, 蒋永生.水泥加固土的弹塑性损伤模型[J]. 工程力学, 2002(6):33-38.
[6]
崔宏环, 刘建坤, 张立群, 等.寒区路基改良土冻融循环与荷载耦合作用下损伤力学研究[J]. 冰川冻土, 2016, 38(4):1183-1188.
[7]
张俊. 基于压汞试验的水泥固化土损伤演化规律研究[D].长春:吉林大学, 2013.
[8]
王军祥, 姜谙男.Lemaitre等向硬化弹塑性损伤耦合本构模型积分算法及程序实现[J]. 工程力学, 2015, 32(2):12-19
, 30.
[9]
刘泉声, 黄诗冰, 康永水, 等.岩体冻融疲劳损伤模型与评价指标研究[J]. 岩石力学与工程学报, 2015, 34(6):1116-1127.
[10]
WANG Q, KO W H. Modeling of Touch Mode Capacitive Sensors and Diaphragms[J]. Sensors and Actuators, 1999, 75(3):230-241.
[11]
王天亮. 冻融条件下水泥及石灰路基改良土的动静力特性研究[D]. 北京:北京交通大学, 2011.
[12]
杜鹏. 多因素耦合作用下混凝土的冻融损伤模型与寿命预测[D]. 北京:中国建筑材料科学研究总院, 2014.
Relative Articles
[1] HAN Shengsheng, JU Xiaolei, PANG Luxin. DESIGN AND PRACTICE OF LOW-CARBON HOUSING OF ZHONGDA IN TONGLI [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 34-38. doi: 10.13204/j.gyjzG20020705
[2] ZHAO Xiping, AI Shan, LIANG Feihe, HAO Jiping. EXPERIMENTAL AND NUMERICAL SIMULATION STUDY ON THERMAL PERFORMANCES OF A NEW TYPE OF ASSEMBLED WOOD-STRUCTURE WALLBOARDS [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 49-56. doi: 10.13204/j.gyjzG20042403
[3] Su Yang Chen Ping, . RESEARCH ON RELIABILITY OF TAKING WIND WALLS AS NEW SPACE LANDSCAPE IN A CITY [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 58-61. doi: 10.13204/j.gyjz201507012
[4] Li Nan, Yang Liu, Luo Zhixing, Wang Qianqian. STUDY OF ADAPTABILITY FOR STRAW-BALE HOUSES IN NORTHERN RURAL AREA [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 64-67.
[5] Zhang Hui, Yu Zhuang. RESEARCH ON CLIMATE ADAPTABILITY OF ENERGY CONSERVATION BUILDING WITH RENEWABLE ENERGY SOURCES IN HOT-SUMMER AND COLD-WINTER ZONE [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 40-43,114. doi: 10.13204/j.gyjz201305009
[6] Shu Xin, Ji Xiang. STUDY ON ENERGY- EFFICIENT OF RESIDENTIAL BUILDINGS IN COLD REGIONS OF JIANGSU PROVINCE [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 67-70,164. doi: 10.13204/j.gyjz2011205011
[7] Yang Yanhong, Lu Weiwei, Yang En. RESEARCH ON THE DESIGN OF GREEN HOUSINGS IN NEW SOCIALIST COUNTRYSIDE [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 26-29. doi: 10.13204/j.gyjz201003008
[8] Wang Cuixia, Zhang Aijun, Zhang Xiaodan. ANALYSIS OF PROSPECTS OF USING STRAW-BALES FOR RURAL DWELLINGS IN NORTH HENAN [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 39-42. doi: 10.13204/j.gyjz201011011
[9] Cui Yanqi. CALCULATION OF ENERGY CONSUMPTION AND ENERGY-SAVING ANALYSIS OF RESIDENTIAL BUILDINGS [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 20-22. doi: 10.13204/j.gyjz200907007
[10] Zhang Lili, Yang Zugui, Wang Huaide. ENERGY-SAVING REFORM STRATEGY OF THE EXISTING RURAL RESIDENTIAL BUILDINGS IN COLD REGIONS [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 23-25,40. doi: 10.13204/j.gyjz200907008
[11] Sui Jieli, Wang Shaoling, Jia Zhilin. DISCUSSION ON OPTIMIZATION DESIGN OF HOUSES IN SOCIALIST NEW RURALITY BASED ON THE CONCEPT OF ENERGY-SAVING AND POLLUTANT REDUCTION [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 128-130. doi: 10.13204/j.gyjz200807032
[12] Zhou Zhenlun, Nie Hao, Huang Yunnian, Wang Bo. RESEARCH ON TECHNICAL CANONICAL FORM OF ECOLOGICAL ENERGY-SAVING OF NEW RURAL RESIDENCES IN SOUTHWEST REGION [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(2): 25-27. doi: 10.13204/j.gyjz200802009
[13] Di Peng, Wu Haojun, Li Baiyi. HOUSING ENERGY CONSERVATION STRATEGY IN NEW COUNTRYSIDE [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 118-120,5. doi: 10.13204/j.gyjz200811030
[14] Fang Zhiyong, Huang Wei, Lin Chuan. RENEWAL AND REFORM OF MODERN RURAL RESIDENCE [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 33-36. doi: 10.13204/j.gyjz200706009
[15] Feng Xiao-ping, Long Wei-ding. TECHNICAL AND ECONOMIC ANALYSIS OF ENERGY) SAVING POTENTIALITY IN THE RESIDENTIAL BUILDINGS [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(12): 47-49,57. doi: 10.13204/j.gyjz200712011
[16] Dong Hairong, Qi Shaoming, Jiang Guaini, Li Chunju. ENERGY_SAVING MEASURES OF SUBURBAN HOUSES IN THE COLD DISTRICT [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 30-32,22. doi: 10.13204/j.gyjz200703009
[17] Ren Qianlan, Shen Chunhong, Chen Peng. EXPLORING METHOD OF STRUCTURE ENERGY-SAVING IN ROOF IN HOT SUMMER AND COLD WINTER AREA [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 37-40. doi: 10.13204/j.gyjz200705010
[18] Wu Bilong, Li Ying. CONSIDERATION ON DESIGN OF ENERGY CONSERVATION IN BUILDING BASED ON EXPERIENCE FROM GERMANY [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 104-105.
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 0 2.5 5 7.5 10 12.5 15
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 5.5 % FULLTEXT : 5.5 % META : 91.7 % META : 91.7 % PDF : 2.8 % PDF : 2.8 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 8.3 % 其他 : 8.3 % 上海 : 1.8 % 上海 : 1.8 % 东莞 : 0.9 % 东莞 : 0.9 % 北京 : 12.8 % 北京 : 12.8 % 十堰 : 0.9 % 十堰 : 0.9 % 合肥 : 1.8 % 合肥 : 1.8 % 嘉兴 : 0.9 % 嘉兴 : 0.9 % 天津 : 1.8 % 天津 : 1.8 % 太原 : 2.8 % 太原 : 2.8 % 安康 : 0.9 % 安康 : 0.9 % 宿州 : 1.8 % 宿州 : 1.8 % 常州 : 2.8 % 常州 : 2.8 % 延安 : 1.8 % 延安 : 1.8 % 张家口 : 4.6 % 张家口 : 4.6 % 扬州 : 2.8 % 扬州 : 2.8 % 晋城 : 0.9 % 晋城 : 0.9 % 朝阳 : 0.9 % 朝阳 : 0.9 % 杭州 : 1.8 % 杭州 : 1.8 % 济宁 : 0.9 % 济宁 : 0.9 % 温州 : 0.9 % 温州 : 0.9 % 漯河 : 15.6 % 漯河 : 15.6 % 石家庄 : 1.8 % 石家庄 : 1.8 % 芒廷维尤 : 11.9 % 芒廷维尤 : 11.9 % 荆门 : 0.9 % 荆门 : 0.9 % 西宁 : 4.6 % 西宁 : 4.6 % 贵阳 : 1.8 % 贵阳 : 1.8 % 运城 : 8.3 % 运城 : 8.3 % 邯郸 : 0.9 % 邯郸 : 0.9 % 重庆 : 0.9 % 重庆 : 0.9 % 长沙 : 0.9 % 长沙 : 0.9 % 其他 上海 东莞 北京 十堰 合肥 嘉兴 天津 太原 安康 宿州 常州 延安 张家口 扬州 晋城 朝阳 杭州 济宁 温州 漯河 石家庄 芒廷维尤 荆门 西宁 贵阳 运城 邯郸 重庆 长沙