Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Bo, XU Qiang, TIAN Qinhu, HAN Xie, WANG Zhihai. ANALYSIS ON COLLAPSE VULNERABILITY OF BRB STEEL FRAMES BASED ON COMPONENT DAMAGE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 85-90. doi: 10.13204/j.gyjzG20071204
Citation: WANG Bo, XU Qiang, TIAN Qinhu, HAN Xie, WANG Zhihai. ANALYSIS ON COLLAPSE VULNERABILITY OF BRB STEEL FRAMES BASED ON COMPONENT DAMAGE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 85-90. doi: 10.13204/j.gyjzG20071204

ANALYSIS ON COLLAPSE VULNERABILITY OF BRB STEEL FRAMES BASED ON COMPONENT DAMAGE

doi: 10.13204/j.gyjzG20071204
  • Received Date: 2020-10-20
    Available Online: 2021-07-17
  • The contribution of structural members in structural seismic resistance is different. Traditional structural seismic indicators of vulnerability evaluation cannot reflect that characteristics, nor can it accurately and reasonably evaluate the collapse resistance of structures under earthquake action. Under the action of an earthquake, each member of buckling-restrained braces (BRB) steel frames participates in earthquake resistance in different ways. Buckling-restrained braces dissipate seismic energy through axial deformation, beam ends dissipate seismic energy through bending deformation, and frame columns ensure that structures do not collapse through appropriate deformation. The evaluation index and method of vulnerability analysis based on structure member damage for the overall structure of buckling-restrained braced steel frame were proposed. The structural limit state was defined, and the results for seismic vulnerability analysis of buckling-restrained braced steel frame based on different evaluation indicators were compared. The results showed that although buckling-restrained braced steel frames had improved energy-dissipating capacity of structures due to superior deformation capacity of buckling-restrained braces, damaged still occured at beam ends.
  • 李妍,吴斌,王倩颖,等.防屈曲钢支撑阻尼器的试验研究[J].土木工程学报,2006,39(7):9-14.
    马宁,吴斌,赵俊贤,等. 十宇形内芯全钢防屈曲钢支撑抗震性能构件及子系统足尺试验[J].土木工程学报,2010,43(4):1-7.
    吴克川,陶忠,潘文,等.不同刚度比下防屈曲支撑钢筋混凝土框架抗震性能试验研究[J/OL].[2020-07-11].建筑结构学报.https://doi.org/10.14006/j.jzjgxb.2020.0038.
    CHOI H,KIM J,CHUNG L. Seismic Design of Buckling Restrained Braced Frames Based on a Modified Energy-Balance Concept[J].Canadian Journal of Civil Engineering,2006,33(2):1251-1260.
    吴志平,胡大柱,陈欣宇,等.钢棒防屈曲支撑受力性能研究[J].建筑结构学报,2020,41(3):163-171.
    FAJFAR P,VIDIC T. Consistent Inelastic Design Spectra:Hysteretic and Input Energy[J]. Earthquake Engineering and Structural Dynamics,1994,23(5):523-537.
    BERTERO V V,UANG C M. Issues and Future Directions in the Use of an Energy Approach for Seismic-Resistant Design of Structures[C]//Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings. London,Elsevier Applied Science:1992:95-104.
    徐强,郑山锁,韩言召,等.基于结构整体损伤指标的钢框架地震易损性研究[J].振动与冲击,2014,33(11):78-82.
    YAO J T P,MUNSE W H. Low Cycle Axial Fatigue Behavior of Mild Steel[J]. Journal of Structural Division,1969,95(ST8):5-24.
    MIZUHATA K,GYOTEN Y,KITAMURA H. Study on Low Cycle Fatigue of a Structural Frame Due to Randomly Varying Load[C]//Proceedings of 6th World Conference on Earthquake Engineering. 1981:3031-3036.
    贾明明,吕大刚,张辉.防屈曲支撑钢框架抗地震侧向倒塌能力分析[J].土木工程学报,2013,46(增刊1):7-12.
    马宁,欧进萍,吴斌.基于能量平衡的梁柱刚接防屈曲支撑钢框架设计方法[J].建筑结构学报,2012,33(6):22-28.
    任乐明,钟铁毅. 抗侧刚度比对防屈曲支撑钢框架结构地震响应和能量分配的影响[J]. 北京交通大学学报,2014,38(3):68-74.
    徐强,马艳,王社良.基于构件损伤的BRB钢框架易损性分析[J].四川大学学报(工程科学版),2015,47(4):61-68.
    PARK Y J,ANG A H S, WEN Y K. Seismic Damage Analysis of Reinforced Concrete Buildings[J]. Journal of Structural Engineering,1985,111(4):740-757.
    KUMAR S, USAMI T. A Note on Evaluation of Damage in Steel Structures under Cyclic Loading[J]. JSCE Journal of Structural Engineering,1994,40:177-188.
    Federal Emergency Management Agency(FEMA). Prestandard and Commentary for the Seismic Rehabilitation of Buildings:FEMA 356[S]. Washington,D.C.:Federal Emergency Management Agency,2000.
    AKBAS B. Energy-Based Earthquake Resistant Design of Steel Moment Resisting Frames[D]. Chicago:Department of Civil and Architectural Engineering,Illinois Institute of Technology,1997.
    LOCO N,CORNELL C A. Structure-Specific Scalar Intensity Measures for Near-Source and Ordinary Earthquake Ground Motions[J]. Earthquake Spectra,2007,23(2):357-392.
    FEMA. Quantification of Building Seismic Performance Factors:ATC-63 FEMA P-695[S]. Washington,D.C.:Federal Emergency Management Agency, 2009.
    于晓辉,吕大刚.考虑结构不确定性的地震倒塌易损性分析[J].建筑结构学报,2012,33(10):8-14.
    吕大刚,于晓辉,王光远.单地震动记录随机增量动力分析[J].工程力学,2010,27(增刊1):53-58.
    王丹. 钢框架结构的地震易损性及概率风险分析[D]. 哈尔滨:哈尔滨工业大学,2006.
  • Relative Articles

    [1]ZHANG Ailin, YANG Shuo, JIANG Ziqin, ZHANG Wenying, LIU Jie, YANG Xiaofeng. Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 101-108. doi: 10.13204/j.gyjzG21122104
    [2]ZHANG Juntang, HAN Tengfei, CHEN Dong. ACCIDENT ANALYSIS AND TREATMENT OF STEEL TRUSS TRESTLE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(12): 107-112. doi: 10.13204/j.gyjzG21121503
    [9]Qi Yongsheng Gu Qiang Zhao Fenghua, . RESEARCH ON SEISMIC COLLAPSE MARGIN RATIO OF V-SHAPE CBSF CONSIDERING STRUCTURAL INFLUENCING COEFFICIENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 145-149. doi: 10.13204/j.gyjz201506028
    [10]Shu Xingping Mao Jiaxi Yuan Zhishen Lu Beirong, . THE EVALUATION OF CAPACITY TO RESIST PROGRESSIVE COLLAPSE OF PREFABRICATED STEEL FRAME STRUCTURE WITH INCLINED SUPPORT JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(10): 13-17. doi: 10.13204/j.gyjz201510003
    [11]Wang Lai, Ma Yang, Qiu Jing. PROGRESSIVE COLLAPSE ANALYSIS OF STEEL FRAME STRUCTURE WITH COMPOSITE FLOOR SLAB TWO-WAY TENSION MODEL[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 159-163. doi: 10.13204/j.gyjz2001407033
    [12]Zhang Yang, Fan Shengjun, Li Huimin. RESEARCH ON ASSESSMENT INDEX SYSTEM FOR THE GREEN REGENERATION OF OLD INDUSTRIAL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 56-59.
    [13]Cai Jianguo, Wang Fenglan, Feng Jian, Zhang Jin. REVIEW OF THE KEY ELEMENT FOR PROGRESSIVE COLLAPSE OF STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 85-89. doi: 10.13204/j.gyjz201110021
    [14]Huang Pin, He Yibin, Li Yan, Leng Qiaojuan, Guo Jian. COLLAPSING REASONS ANALYSIS OF THE WALL OF A RECTANGULAR RC CONTACT OXIDATION TANK[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 126-129. doi: 10.13204/j.gyjz201108030
    [15]Yang Xiaoming, Zhu Hongqiang, Xu Yue. COLLAPSE OF BOULEVARD DE LA CONCORDE OVERPASS IN CANADA[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(10): 23-25,135. doi: 10.13204/j.gyjz201010006
    [16]Ouyang Yu, Zhang Wenjie. ANALYSIS OF THE SEISMIC EFFECTS FOR THE SEISMIC RETROFIT OF A CONCRETE FRAME WITH BUCKLING-RESTRAINED BRACES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 118-121. doi: 10.13204/j.gyjz200911027
    [17]Li Hongxing, Bai Guoliang, Lei Yisheng, Yue Jianguang. ANALYSIS ON A COLLAPSE ACCIDENTS OF ARCHED CORRUGATED STEEL ROOF[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(10): 112-114. doi: 10.13204/j.gyjz200710030
    [18]Miao Ji-jun, Hao Yong, Liu Yan-chun, Yu Su-jian. RESEARCH ON COLLAPSE OF A SINGLE-FLOOR FACTORY BUILDING WITH STEEL-WOOD ROOF[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 93-94. doi: 10.13204/j.gyjz200604029
    [19]Zhang Yuhui, Zhao Zhonghu, Ju Yang. NUMERICAL SIMULATION OF COLLAPSE OF RC FRAME UNDER EARTHQUAKE LOADS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 57-61,79. doi: 10.13204/j.gyjz200403018
  • Cited by

    Periodical cited type(2)

    1. 宋颜培,陈锦晶. 基于增量动力地震易损性分析的高层结构抗震加固研究. 地震工程学报. 2024(02): 309-317 .
    2. 高东阳,路国运,冯凌斐,杨会伟,郑芳俊,李宏武. 环状悬挑钢结构整体提升过程中局部失效研究. 广西大学学报(自然科学版). 2024(03): 464-474 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.5 %FULLTEXT: 9.5 %META: 89.5 %META: 89.5 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %China: 1.1 %China: 1.1 %上海: 5.3 %上海: 5.3 %北京: 3.2 %北京: 3.2 %常德: 1.1 %常德: 1.1 %张家口: 4.2 %张家口: 4.2 %昆明: 1.1 %昆明: 1.1 %晋城: 1.1 %晋城: 1.1 %朝阳: 1.1 %朝阳: 1.1 %武汉: 3.2 %武汉: 3.2 %漯河: 1.1 %漯河: 1.1 %石家庄: 2.1 %石家庄: 2.1 %福州: 6.3 %福州: 6.3 %芒廷维尤: 21.1 %芒廷维尤: 21.1 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 1.1 %苏州: 1.1 %西宁: 2.1 %西宁: 2.1 %贵阳: 3.2 %贵阳: 3.2 %运城: 17.9 %运城: 17.9 %邯郸: 1.1 %邯郸: 1.1 %郑州: 3.2 %郑州: 3.2 %重庆: 2.1 %重庆: 2.1 %长沙: 1.1 %长沙: 1.1 %其他China上海北京常德张家口昆明晋城朝阳武汉漯河石家庄福州芒廷维尤芝加哥苏州西宁贵阳运城邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads(1) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return