Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN, Weihong, WANG, Chenyang, ZENG. RESEARCH ON SEISMIC BEHAVIOR AND FAILURE MODE OF “STRONG BEAM AND WEAK COLUMN” PC JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 22-27. doi: 10.13204/j.gyjz202001005
Citation: ZHAO Xiumin, YANG Haifeng, LI Xueliang, YANG Peng, LI Bingsu. STUDY ON STATIC AND DYNAMIC IMPACT PROPERTIES OF STEEL-FIBER REINFORCED RUBBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 173-178. doi: 10.13204/j.gyjzG20070301

STUDY ON STATIC AND DYNAMIC IMPACT PROPERTIES OF STEEL-FIBER REINFORCED RUBBER CONCRETE

doi: 10.13204/j.gyjzG20070301
  • Received Date: 2020-07-03
    Available Online: 2021-11-10
  • Publish Date: 2021-11-10
  • In order to study the static and dynamic impact properties of concrete with different contents of steel fibers and rubber powder, 8 groups of 48 cubic specimens were designed for compressive and splitting tensile strength tests, 8 groups of 24 cubic specimens were designed for compressive stress-strain curve test, 6 slabs were designed for impact test,whose content of steel fibers was 0%, 0.5%, 1.0% and 1.5%, and rubber powder was 0%, 5%, 10% and 15%. The results showed that the compressive strength of concrete decreased with the increase of rubber powder content. When the rubber powder content was costant, the steel fiber content of 0.5% had little effect on the compressive strength and impact toughness of rubber concrete, but it could improve the tensile strength of rubber concrete by 7% to 28%. When the content of steel fiber rubber powder was 1% and the content of rubber powder was 10%, it was the optimal mixing amount of steel-fiber reinforced rubber concrete. The suggested constitutive relation of steel-fiber reinforced rubber concrete was in good agreement with the experimental data.
  • [1]
    阮盛华,李丽娟,刘锋,等.橡胶混凝土的研究及应用进展[J].工业建筑,2012,42(增刊2):1159-1176.
    [2]
    ZHENG L, HUO SHARON X, YUAN Y. Experimental Investigation on Dynamic Properties of Rubberized Concrete[J]. Construction and Building Materials, 2007(5):939-947.
    [3]
    冯凌云,袁群,杨卫坤.橡胶混凝土抗渗性能试验研究[J].人民黄河,2011, 33(9):125-127.
    [4]
    刘日鑫,侯文顺,徐永红.废橡胶颗粒对混凝土力学性能的影响[J].建筑材料学报,2009,12(3):341-344.
    [5]
    ABAZA O A, HUSSEIN Z S. Flexural Behavior of Steel Fiber-Reinforced Rubberized Concrete[J]. Journal of Materials in Civil Engineering,2016,28(1):50-76.
    [6]
    付传清,颜扬,张耿耿,等.钢纤维改性橡胶混凝土基本力学性能研究[J].混凝土,2016,38(11):144-148.
    [7]
    李厚民,张岩,舒展,等.钢纤维改性橡胶混凝土的蠕变特性试验研究[J].混凝土,2016,38(3):51-55.
    [8]
    张岩,李厚民,段小龙,等.钢纤维改性橡胶混凝土性能试验研究[J].湖北工业大学学报,2016,31(1):105-107.
    [9]
    周梦婷.混杂纤维混凝土基本力学性能与板件的抗爆性能研究[D].南宁:广西大学,2016.
    [10]
    李文斌.橡胶混凝土动态力学性能实验研究[D].广州:广州大学,2011.
    [11]
    过镇海,张秀琴,张达成,等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报,1982,3(1):1-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return