Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN Tianlei, NIU Mengshi, XIE Sa. “FATTING PILE EFFECT” AND CHANGE LAWS OF COLLAPSIBLE COEFFICIENTS COMPACTED WITH SDS PILES IN SELF-WEIGHT COLLAPSE LOESS FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 6-10. doi: 10.13204/j.gyjz202006002
Citation: LI Shunqun, WU Qiong, ZHANG Fan, LI Lijun. INFLUENCES OF THE WATER CONTENT ON SOIL THERMAL CONDUCTIVITY COEFFICIENTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 177-180. doi: 10.13204/j.gyjzG20070106

INFLUENCES OF THE WATER CONTENT ON SOIL THERMAL CONDUCTIVITY COEFFICIENTS

doi: 10.13204/j.gyjzG20070106
  • Received Date: 2020-07-01
    Available Online: 2022-01-11
  • Based on the thermal conductivity coefficients of soil skeletons obtained by experiments and the microscopic mechanism of interaction between soil particles and pore water, the influence of the pore water content on thermal conductivity coefficients of frozen soil was analyzed. With the increase of the pore water content, the two characteristic points would appear in the curve of soil thermal conductivity coefficients, they were called "the soil structure control point" and "the soil structure dispersion point" respectively. The curve of thermal conductivity coefficients could be divided into three phases by the two varible characteristics points:1) the combination phase of soil skeletons and strong binding water; 2) the phase of water-filled pores of soil; 3) the phase of soil skeletons damaged by pore water. On the basis, the change laws of soil thermal conductivity in these three stages were studied by using the physical model of heat transfer, and the simple and practical formula of thermal conductivity coefficients was obtained based on the theory of the electric lattice model.
  • [1]
    徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社, 2010.
    [2]
    陈之祥, 李顺群, 夏锦红,等. 冻土导热系数测试和计算现状分析[J]. 建筑科学与工程学报, 2019,36(2):101-115.
    [3]
    COSENZA P, GUÉRIN R, TABBAGH A. Relationship Between Thermal Conductivity and Water Content of Soils Using Numerical Modelling[J]. European Journal of Soil Science, 2003.https://doi.org/10.1046/j.1365-2389.2003.00539.x.
    [4]
    NAKSHABANDI G A, KOHNKE H. Thermal Conductivity and Diffusivity of Soils as Related to Moisture Tension and Other Physical Properties[J]. Agricultural Meteorology, 1965, 2(4):271-279.
    [5]
    SEPASKHAH A R, BOERSMA L. Thermal Conductivity of Soils as a Function of Temperature and Water Content[J]. Soil Science Society of America Journal, 1979, 43(3):439.
    [6]
    LEONG W H, TARNAWSKI V R, AITTOMÄKI A. Effect of Soil Type and Moisture Content on Ground Heat Pump Performance[J]. International Journal of Refrigeration, 1998, 21(8):595-606.
    [7]
    原喜忠,李宁,赵秀云,等. 非饱和(冻)土导热系数预估模型研究[J].岩土力学,2010,31(9):2689-2694.
    [8]
    汪恩良,姜海强,崔恩彤,等. 冻融对重塑黏土导热系数影响的试验研究[J].工程热物理学报, 2018, 39(4):871-879.
    [9]
    叶万军,董西好,杨更社,等. 含水率和干密度对黄土热参数影响的试验研究[J].岩土力学, 2017, 38(3):656-662.
    [10]
    陈之祥,李顺群,夏锦红,等.基于未冻水含量的冻土热参数计算分析[J].岩土力学,2017, 38(增刊2):67-74.
    [11]
    于珊, 李顺群, 冯慧强. 土的导热系数与其干密度、饱和度和温度的关系[J].天津城建大学学报, 2015, 21(3):172-176.
    [12]
    路建国, 张明义, 张熙胤,等. 冻土水热力耦合研究现状及进展[J].冰川冻土, 2017, 39(1):102-111.
    [13]
    INCROPERA F P. 传热和传质基本原理[M]. 叶宏、葛新石译.北京:化学工业出版社, 2007.
    [14]
    马巍, 王大雁. 冻土力学[M] 北京:科学出版社,2014.
    [15]
    李顺群, 张翻, 王彦洋,等. 冻土导热系数骨架模型研究[J]. 深圳大学学报(理工版), 2020, 37(2):165-172.
  • Relative Articles

    [1]QIN Wenbo, ZHOU Cheng, CHEN Jian, WANG Fan, LIU Wenli. Digital Twin-Based Platform Framework for Metro Bridge and Tunnel Structure Service[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 43-50. doi: 10.3724/j.gyjzG24010401
    [8]Zhong Xiaoping, Jin Weiliang. FRAMEWORK OF DESIGN THEORY OF WHOLE LIFE-CYCLE PERFORMANCE IN CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 1-9. doi: 10.13204/j.gyjz201308001
    [9]Zhong Zhenyu. NUMERICAL SIMULATION OF MASONRY STRUCTURE SUBJECTED TO EARTHQUAKE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 62-64,117. doi: 10.13204/j.gyjz200908016
    [10]Liu Jinrong, Deng Yongsheng, Jiang Chun, Yang Jianjiang. STUDY ON SEISMIC DESIGN CRITERION OF EXISTING STRUCTURE IN RE-SERVICE PERIOD[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 23-25. doi: 10.13204/j.gyjz200705006
    [11]Wang Yuan-qing, Tan Cheng-dong, Zhang Yong. ANALYSIS ON SEISMIC RESPONSE OF ARCHED CORRUGATED METAL ROOF[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 78-81. doi: 10.13204/j.gyjz200608024
    [12]Zhang Junzhi, Su Xiaozu. A MODEL STOCHASTIC TIME-DEPENDENT RESISTANCE OF EXISTING RC STRUCTURES BASED ON THE BAYESIAN METHOD AND MEASURED SAMPLE VALUE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 30-32. doi: 10.13204/j.gyjz200503012
    [13]Shao Jinsong, Liu Weiqing. CALCULATION OF RELIABILITY OF EXISTING MEMBERS FOR CONCRETE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(8): 47-50. doi: 10.13204/j.gyjz200408016
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0301234
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 82.8 %META: 82.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.8 %其他: 13.8 %北京: 17.2 %北京: 17.2 %张家口: 13.8 %张家口: 13.8 %芒廷维尤: 48.3 %芒廷维尤: 48.3 %西宁: 6.9 %西宁: 6.9 %其他北京张家口芒廷维尤西宁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return