Citation: | LI Shunqun, WU Qiong, ZHANG Fan, LI Lijun. INFLUENCES OF THE WATER CONTENT ON SOIL THERMAL CONDUCTIVITY COEFFICIENTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 177-180. doi: 10.13204/j.gyjzG20070106 |
[1] |
徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社, 2010.
|
[2] |
陈之祥, 李顺群, 夏锦红,等. 冻土导热系数测试和计算现状分析[J]. 建筑科学与工程学报, 2019,36(2):101-115.
|
[3] |
COSENZA P, GUÉRIN R, TABBAGH A. Relationship Between Thermal Conductivity and Water Content of Soils Using Numerical Modelling[J]. European Journal of Soil Science, 2003.https://doi.org/10.1046/j.1365-2389.2003.00539.x.
|
[4] |
NAKSHABANDI G A, KOHNKE H. Thermal Conductivity and Diffusivity of Soils as Related to Moisture Tension and Other Physical Properties[J]. Agricultural Meteorology, 1965, 2(4):271-279.
|
[5] |
SEPASKHAH A R, BOERSMA L. Thermal Conductivity of Soils as a Function of Temperature and Water Content[J]. Soil Science Society of America Journal, 1979, 43(3):439.
|
[6] |
LEONG W H, TARNAWSKI V R, AITTOMÄKI A. Effect of Soil Type and Moisture Content on Ground Heat Pump Performance[J]. International Journal of Refrigeration, 1998, 21(8):595-606.
|
[7] |
原喜忠,李宁,赵秀云,等. 非饱和(冻)土导热系数预估模型研究[J].岩土力学,2010,31(9):2689-2694.
|
[8] |
汪恩良,姜海强,崔恩彤,等. 冻融对重塑黏土导热系数影响的试验研究[J].工程热物理学报, 2018, 39(4):871-879.
|
[9] |
叶万军,董西好,杨更社,等. 含水率和干密度对黄土热参数影响的试验研究[J].岩土力学, 2017, 38(3):656-662.
|
[10] |
陈之祥,李顺群,夏锦红,等.基于未冻水含量的冻土热参数计算分析[J].岩土力学,2017, 38(增刊2):67-74.
|
[11] |
于珊, 李顺群, 冯慧强. 土的导热系数与其干密度、饱和度和温度的关系[J].天津城建大学学报, 2015, 21(3):172-176.
|
[12] |
路建国, 张明义, 张熙胤,等. 冻土水热力耦合研究现状及进展[J].冰川冻土, 2017, 39(1):102-111.
|
[13] |
INCROPERA F P. 传热和传质基本原理[M]. 叶宏、葛新石译.北京:化学工业出版社, 2007.
|
[14] |
马巍, 王大雁. 冻土力学[M] 北京:科学出版社,2014.
|
[15] |
李顺群, 张翻, 王彦洋,等. 冻土导热系数骨架模型研究[J]. 深圳大学学报(理工版), 2020, 37(2):165-172.
|
[1] | WANG Shuangjie, CHEN Jianbing, JIN Long, DONG Yuanhong. Research Advances and Prospect of Scale Effect Theory of Permafrost Roadbed[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 45-53. doi: 10.13204/j.gyjzG23081216 |
[2] | CHEN Hang-jie, HE Fei, WANG Xu, CHEN Ming-wei. Research on Influence of Roughness on Shear Characteristics of Interfaces Between Frozen Soil and Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 186-192,213. doi: 10.13204/j.gyjzG22012005 |
[3] | GONG Chao, HOU Zhaoxin, LIANG Zihao, WU Zhaoqi, LIANG Weiqiao, FANG Wujun. Experimental Research on Mechanical and Thermal Properties of Four Insulating Materials for Heat Bridge Effect[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 66-71,165. doi: 10.13204/j.gyjzG21030909 |
[4] | QU Xiao, YAO Yangping, LUO Xiaoying, CHEN Dong. A Calculation Method for Vapor Migration in the Earth's Surface of “the Pot Cover Effect”[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 194-198. doi: 10.13204/j.gyjzG21040602 |
[5] | LIU Tianhua, WANG Miao, XU Yanan. ICE FRONT IDENTIFICATION OF SEASONALLY FROZEN SOILS WITH A PARALLEL PLATE CAPACITOR[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 146-152. doi: 10.13204/j.gyjzG20090711 |
[6] | WANG Xiaoxiao, LIU Chang, ZHANG Ju, LIU Shuguang, YAN Zhangwang, LI Heng. EFFECT OF FREEZING LAWS FOR CONCRETE PORES ON COMPRESSIVE STRENGTH IN PERMAFROST REGIONS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 197-201. doi: 10.13204/j.gyjzG20072117 |
[7] | CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406 |
[8] | ZHU Jing, FENG Shihui, GUO Qinghua, QU Zijian, LIU Shaotong, ZHENG Wenzhong. EXPERIMENT ON THERMAL PERFORMANCE OF WALL MADE OF ALKALI-ACTIVATED SLAG CEMENTITIOUS MATERIAL MIXED WITH WHEAT-STRAW PLANT FIBER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 58-62,180. doi: 10.13204/j.gyjzG21010708 |
[11] | Yang Jianhui, Chen Jing, Zhang Peng, Qin Bendong, Zhao Hongbing. EXPERIMENTAL STUDY ON HIGH-PERFORMANCE SHALE CERAMSITE CONCRETE BASED ON INSULATION STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 102-108. doi: 10.13204/j.gyjz2001412016 |
[12] | Hu Weixin, Huang Wei, Qin Honggen. EFFECT OF DIATOMITE,ULTRAFINE RICE HUSK ASH,AND SILICON ASH ON THE PERFORMANCE OF DUAL POROUS CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 113-116. doi: 10.13204/j.gyjz201410023 |
[13] | Yao Zhaoming, Zhou Yang, Xu Ying, Wang Houliang. GENETIC ALGORITHMS FRACTIONAL ORDER DERIVATIVE BURGERS CREEP MODEL FOR ARTIFICIAL FROZEN SOIL[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 73-76. doi: 10.13204/j.gyjz201311017 |
[14] | Jiang Ningshan, Liu Lianxin, Yang Lifeng, Hou Yueqin, Li Shuan, Zhang Weiqin, Dai Dahu, Zhang Kexue. APPLICATION AND STUDY OF VENTILATED U-ROADBED IN QINGHAI-TIBET PLATEAU FROZEN SOIL REGION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(10): 83-86. doi: 10.13204/j.gyjz201310018 |
[15] | Zhang Jiawen, Zhang Hongru, Song Jiapeng, Liu Yawei. EXPERIMENTAL STUDY OF CONTRAST MODEL FOR CHARACTERISTICS OF PILE UNDER LATERAL LOAD ACTION IN FROZEN AND THAWED SOILS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(10): 66-70. doi: 10.13204/j.gyjz201310015 |
[16] | Liu Ronggui, Liu Tao, Zhang Yiduo, Gao Song, Chen Yu. RESEARCH ON A MODEL OF THE INFLUENCE COEFFICIENT FOR PRE-FREEZE-THAWING FATIGUE LIFE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 5-8,20. doi: 10.13204/j.gyjz201006002 |
[17] | Zhou Qiujuan, Chen Xiaoping, Zeng Lingling. RESEARCH ON NEURAL NETWORK MODEL OF DEFORMATION BEHAVIOR OF SOFT SOIL[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 48-53. doi: 10.13204/j.gyjz200806014 |
[18] | Guo Hongxian, Song Shushuang, Li Xiufeng. SOIL NAILING UNDER THE INFLUENCE OF THE SEASONAL FROST[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 67-70,119. doi: 10.13204/j.gyjz200508017 |
[19] | Shi Minglei, Zhang Bo. STUDY ON INTERACTION CHARACTERISTICS BETWEEN CLAY AND REINFORCEMENT[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 50-54. doi: 10.13204/j.gyjz200504015 |
1. | 胥洪峰,高建岗. 卫星耦合传感网环境下实时地理信息系统研究. 软件. 2024(03): 158-160 . ![]() | |
2. | 苗冰杰,罗仕刚,王春红,宋少波,何劲. 光纤布拉格光栅耦合方式对单向CFRP板传感特性的影响. 激光与光电子学进展. 2023(05): 340-346 . ![]() |