Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Chao, CHEN Youliang, DU Xi. EFFECT OF NANO-TIO2 PARTICLES ON MECHANICAL PROPERTIES OF CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 154-160. doi: 10.13204/j.gyjzG20062604
Citation: XU Chao, CHEN Youliang, DU Xi. EFFECT OF NANO-TIO2 PARTICLES ON MECHANICAL PROPERTIES OF CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 154-160. doi: 10.13204/j.gyjzG20062604

EFFECT OF NANO-TIO2 PARTICLES ON MECHANICAL PROPERTIES OF CONCRETE

doi: 10.13204/j.gyjzG20062604
  • Received Date: 2020-06-26
    Available Online: 2021-08-19
  • The effect of nano-TiO2 particles on the compressive, tensile and freeze-thaw durability of concrete was studied, and the normal concrete and the nano-TiO2 concrete were simulated at room temperature by PFC 2D. The results showed that the nano-TiO2 particles could improve the compactness of concrete, at room temperature, 3% nano-TiO2 particles had the most improvement in concrete compressive strength, which was 20.18% higher than normal concrete. The tensile performance of nano-TiO2 concrete was unchanged, but the freeze-thaw resistance of nano-TiO2 concrete had been greatly improved. After being subjected to 100 freeze-thaw cycles, its freeze resistance increased by 136.8% compared to normal concrete. PFC 2D could well simulate the compressive and tensile mechanical properties of normal concrete and nano-particle modified concrete. Due to the discreteness of concrete, there was a slight difference between the simulated and experimental stress and strain trends, but it could accurately reflect its peak stress and strain.
  • [1]
    ZAHIRI F, ESKANDARI-NADDAF H. Optimizing the Compressive Strength of Concrete Containing Micro-Silica, Nano-Silica, and Polypropylene Fibers Using Extreme Vertices Mixture Design[J]. Frontiers of Structural & Civil Engineering, 2019, 4:821-830.
    [2]
    CAMILETTI J, SOLIMAN A M, NEHDI M L. Effects of Nano and Micro-Limestone Addition on Early-Age Properties of Ultra-High-Performance Concrete[J]. Materials and structures, 2013, 46(6):881-898.
    [3]
    QUERCIA G, HVSKEN G, BROUWERS H J H. Water Demand of Amorphous Nano Silica and Its Impact on the Workability of Cement Paste[J]. Cement & Concrete Research, 2012, 42(2):344-357.
    [4]
    韩学强, 詹树林, 徐强,等. 干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J]. 复合材料学报,2020,37(1):198-204.
    [5]
    高丹盈, 赵亮平, 陈刚. 高温中纤维纳米混凝土单轴受压应力-应变关系[J]. 土木工程学报,2017,50(9):46-58.
    [6]
    LEE B Y, KURTIS K E. Influence of TiO2 Nanoparticles on Early C3S Hydration[J]. Journal of the American Ceramic Society, 2010, 93(10):3399-3405.
    [7]
    徐迅, 卢忠远. 纳米二氧化硅对硅酸盐水泥水化硬化的影响[J]. 硅酸盐学报,2007,35(4):478-484.
    [8]
    应姗姗. 加气混凝土的纳米碳酸钙改性及高铝质加气混凝土的制备[D]. 杭州:浙江大学,2014.
    [9]
    ZELIĆ J, RUŠIĆ D, VEZA D, et al. The Role of Silica Fume in the Kinetics and Mechanisms During the Early Stage of Cement Hydration Cem Concr Res, 2000, 30(10):1655-1662.
    [10]
    CHAIPANICH A, NOCHAIYA T, WONGKEO W, et al. Compressive Strength and Microstructure of Carbon Nanotubes-Fly Ash Cement Composites[J]. Materials Science & Engineering A, 2010, 527(4/5):1063-1067.
    [11]
    KACHANOV V K, SOKOLOV I V, KONTSOV R V, et al. Ultrasonic Wave Velocity Measurement in Concrete Using the Impact-Echo Method[J]. Insight, 2019, 61(1):15-19.
    [12]
    Itasca Consulting Group. PFC 2D Users' Manual[M].Minnersota:Inc.,2017.
  • Cited by

    Periodical cited type(6)

    1. 乔伟毅,贾青,王正君,唐宁,高家玮. 纳米材料对混凝土力学性能的影响研究. 江苏建材. 2024(01): 9-11 .
    2. 刘先南,王珂,李学军. 双掺纳米二氧化钛和秸秆灰对混凝土力学及微观特性试验研究. 混凝土. 2023(06): 125-129+133 .
    3. 陈正伟,许桂霞. 冻融循环和盐卤侵蚀作用下复掺纳米混凝土的损伤模型. 材料导报. 2023(S2): 262-267 .
    4. 王磊,王元帅,赵燕茹,张建新,白建文. 纳米TiO_2混凝土抗压强度及孔结构试验研究. 内蒙古工业大学学报(自然科学版). 2022(06): 549-555 .
    5. 石晓亮,韦京利,张黎昕,谢吉程,陈正. 纳米水泥基材料的抗压强度多因素计算模型. 广西大学学报(自然科学版). 2022(06): 1424-1433 .
    6. 刘中坤,王正君,吴昊,陈茜,叶昆河. 防冻剂和纳米材料对负温条件混凝土的影响. 广东建材. 2021(08): 63-65+13 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.9 %FULLTEXT: 5.9 %META: 93.6 %META: 93.6 %PDF: 0.5 %PDF: 0.5 %FULLTEXTMETAPDF

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (190) PDF downloads(2) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return