Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Yi, TONG Huawei, QIU Rongkang, YUAN Jie. RESEARCH ON MECHANICAL PROPERTIES OF RUBBER-PARTICLE-IMPROVED SOIL CEMENTED BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 8-14,7. doi: 10.13204/j.gyjzG20062207
Citation: WANG Yi, TONG Huawei, QIU Rongkang, YUAN Jie. RESEARCH ON MECHANICAL PROPERTIES OF RUBBER-PARTICLE-IMPROVED SOIL CEMENTED BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 8-14,7. doi: 10.13204/j.gyjzG20062207

RESEARCH ON MECHANICAL PROPERTIES OF RUBBER-PARTICLE-IMPROVED SOIL CEMENTED BY MICP

doi: 10.13204/j.gyjzG20062207
  • Received Date: 2020-06-22
    Available Online: 2021-03-31
  • Microbial-induced calcite precipitation (MICP) can effectively improve the strength of sand, while rubber-particle sand compacted with sandy soil is of low densities, strong elastic deformation capacity, high energy dissipation capacity and low elastic modulus than that of pure sand. Therefore, a method of improving soil combined with rubber particles and the MICP tachnique was proposed. The influence of rubber-particle contents on microbial induced calcium carbonate precipitation was analyzed. Based on the resonant-column test, the effects of rubber contents and confining pressure on dynamic shear modulus and equivalent damping ratios of the mixed soil were compared. The unconfined compressive strength of the mixed soil could be improved when the contents of rubber particles were in a cartain range (about 3%). The confining pressure and the contents of rubber particles were the main factors affecting the dynamic moduli and damping ratios of the soil. The higher the confining pressure, the greater the dynamic modulus and the slower the attenuation of damping ratios, and the smaller the damping ratios; under the constant confining pressure, the higher the rubber contents, the slower the attenuation of the dynamic modulus, and the larger the damping ratios.
  • BROWN R E. Vibro Flotation Compaction of Cohesionless Soils[J]. J Geotech Eng Div,1977, 103(12):1437-1451.
    STUEDLEIN A W, GIANELLA T N, CANIVAN G. Densification of Granular Soils Using Conventional and Drained Timber Displacement Piles[J]. J Geotech Geoenviron Eng,2016, 142(12):04016075.
    GIANELLA T N, STUEDLEIN A W. Performance of Driven Displacement Pile-Improved Ground in Controlled Blasting Field Tests[J]. J Geotech Geoenviron Eng, 2017,143(9):04017047.
    BOULANGER R W, HAYDEN R F. Aspects of Compaction Grouting of Liquefiable Soil[J]. J Geotech Eng, 1995,121(12):844-855.
    XIAO Y, LIU H, CHEN Q, et al. Evolution of Particle Breakage and Volumetric Deformation of Binary Granular Soils Under Impact Load[J]. Granul Matter, 2017. doi: 10.1007/s10035-017-0756-z.
    WANG Y H, LEUNG S C. Characterization of Cemented Sand by Experimental and Numerical Investigations[J]. J Geotech Geo-Environ Eng, 2008, 134(7):992-1004.
    XIAO Y, STUEDLEIN A M, Chen Q, et al. Stress-Strain-Strength Response and Ductility of Gravels Improved by Polyurethane Foam Adhesive[J]. J Geotech Geoenviron Eng, 2018,144(1):04017108.
    DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical Processes and Geotechnical Applications:Progress, Opportunities and Challenges[J]. Geotechnique, 2013, 63(4):287-301.
    MARTINEZ B C, DEJONG J T, GINN J, et al. Experimental Optimization of Microbial-Induced Carbonate Precipitation for Soil Improvement[J]. Journal of Geotechnical & Geo-Environmental Engineering, 2013,139(4):587-598.
    QABANY A A, SOGA K, SANTAMARINA C. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation[J].Journal of Geotechnical & Geo-Environmental Engineering,2012, 138(8):992-1001.
    李明东,Lin L,张振东,等.微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J].土木工程学报,2016,49(10):80-87.
    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al.Bio-Mediated Soil Improvement[J]. Ecological Engineering,2010, 36(2):197-210.
    彭劼,冯清鹏,孙益成.温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J].岩土工程学报,2018,40(6):1048-1055.
    HAN Z, CHENG X, QIANG M. An Experimental Study on Dynamic Response for MICP Strengthening Liquefiable Sands[J]. Earthq Eng Eng Vib, 2016,15(4):673-679.
    BURBANK M, WEAVER T, LEWIS R, et al. Geotechnical Tests of Sands Following Bioinduced Calcite Precipitation Catalyzed by Indigenous Bacteria[J]. J Geotech Geoenviron Eng, 2011,139(6):928-936.
    FENG K, MONTOYA B M. Quantifying Level of Microbial-Induced Cementation for Cyclically Loaded Sand[J]. J Geotech Geoenviron Eng, 2017:06017005.
    刘汉龙,肖鹏,肖杨,等.MICP胶结钙质砂动力特性试验研究[J].岩土工程学报,2018,40(1):38-45.
    李博,黄茂松.掺有橡胶粉末砂土液化特性的动三轴试验研究[J].岩土力学,2017,38(5):1343-1349.
    American Society of Testing Materials (ASTM). Standard Practice for Use of Scrap Tires in Civil Engineering Applications:D6270-08[S]. West Conshohocken, USA:ASTM, 2012.
    JIANG N J, SOGA K. The Applicability of Microbially Induced Calcite Precipitation (MICP) for Internal Erosion Control in Gravel-Sand Mixtures[J]. Géotechnique, 2016, 67(1):42-55.
    RONG H, QIAN C X. Cementation of Loose Sand Particles Based on Bio-Cement[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2014,29(6):1208-1212.
    KONDNER L. Hyperbolic Stress-Strain Response of Cohesive Soil[J]. Journal of the Soil Mechanic and Foundations Division, ASCE, 1963, 89(1):115-143.
    ISMAIL M A, JOER H A, SIM W H. Effect of Cement Type on Shear Behavior of Cemented Calcareous Soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6):520-529.
    HARDIN B O, EVICH V P.Shear Modulus and Damping in Soils:Design Equations and Curves[J].Journal of Soil Mechanics & Foundations Div,1972,98(7):667-692.
    王晋宝,刘校麟,童焯煜,等.基于共振柱的海砂动剪切模量和阻尼比探究[J].广西大学学报(自然科学版),2019,44(4):1044-1051.
    黄志全,李磊,贾景超,等.非饱和黄土动剪切模量和阻尼比共振柱试验研究[J].人民长江,2015,46(5):69-72.
  • Relative Articles

    [1]LI Yuhuan, CHANG Haosong, FU Yanqing, REN Zhikuan, CHANG Hailin. Research on S-N Curves of 930 MPa Large-Diameter High-Strength Cold-Rolled Threaded Prestressed Steel Rebars[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 115-122. doi: 10.3724/j.gyjzG23111502
    [2]HU Jianlin, XUE Jinhao, GUO Jiangfeng, MENG Zhipeng, LIU Yang, ZHENG Ruihai. Experimental Study on Influential Factors for Shear Properties of Interfaces Between Anchor Bolts and Soil Under Different Confining Pressures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 200-205. doi: 10.3724/j.gyjzG22090804
    [3]HE Gang, ZHENG Qiqi, YANG Song, LI Dengfeng, MEI Xuefeng, LI Zezhou. Analysis on Mechanical Characteristics of h-Type Anti-Slide Piles and Cantilevered Double-Row Anti-Slide Piles[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 192-197. doi: 10.3724/j.gyjzG22092609
    [4]LIN Wenbin, WANG Bin, GAO Yupeng, KE Jintao, CAO Shenggen, KONG Qiuping. Experimental Study on Disintegration of Strongly Weathered Granular Granite Cemented by MICP in the Seawater Environment[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 1-9. doi: 10.3724/j.gyjzG24031816
    [5]WANG Jiaquan, ZHU Mengke, LIN Zhinan, TANG Ying. Experimental Analysis of Clay Effect and Confining Pressure Effect on Mechanical Properties of Sea Sand[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 157-162. doi: 10.13204/j.gyjzG21121703
    [6]CHEN Hang-jie, HE Fei, WANG Xu, CHEN Ming-wei. Research on Influence of Roughness on Shear Characteristics of Interfaces Between Frozen Soil and Structures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 186-192,213. doi: 10.13204/j.gyjzG22012005
    [7]CAI Yong, FENG Bing, CHEN Yong, CUI Xu, WANG Hao. NUMERICAL SIMULATIONS OF AXIAL COMPRESSIVE PROPERTIES FOR GFRP PIPES BY THE FILAMENT WINDING METHOD BASED ON THE PROGRESSIVE DAMAGE MODEL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 194-202. doi: 10.13204/j.gyjzG20070105
    [8]ZHANG Qingfeng, WANG Dongquan, YU Guangyun, SUN Liang, LIU Wenhua. INFLUENCES OF MINING DISTURBANCE ON STABILITY FOR RAILWAY EMBANKMENTS OF COAL GANGUE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 118-124,130. doi: 10.13204/j.gyjz20052030
    [9]MA Lu, YU Min, WANG Yuke. COMPRESSION CHARACTERISTICS AND THE MODEL OF COHESIONLESS SOIL WITH CARBONATE SAND[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 132-136. doi: 10.13204/j.gyjzG20101008
    [10]ZHAO Xiaowan, LYU Jin, WANG Meihua, HUANG Mufan, XU Pengxu, PENG Jie. COMPARATIVE EXPERIMENTAL RESEARCH OF MECHANICAL PROPERTIES BETWEEN SAND CEMENTED BY MICROBIALLY INDUCED CARBONATE PRECIPITATION AND CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 15-18,49. doi: 10.13204/j.gyjzG20052521
    [11]WANG Yanxing, LI Chi, GAO Liping, QIN Xiao. DETERMINATION ON PORE STRUCTURE OF MICROBIAL INDUCED MINERALIZATION MATERIALS IN SALT ENVIRONMENT BY NMR[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 1-7. doi: 10.13204/j.gyjzG19092502
    [15]Tan Qian Guo Hongxian Cheng Xiaohui, . EXPERIMENTAL STUDY OF STRENGTH AND DURABILITY OF MICROBIAL CEMENT MORTAR[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 42-47. doi: 10.13204/j.gyjz201507009
    [16]Shi Jianjun, Chen Sili, Xiao Fa, Liu Zuotao, Zhang Jingyu. EXPERIMENTAL STUDY OF MECHANICAL PROPERTIES EFFECTS ON POLYMER CEMENT MORTAR UNDER FREEZING-THAWING ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 19-22. doi: 10.13204/j.gyjz201502005
    [17]Shao Yan, Wang Shichuan, Li Changyong. CORRELATION ANALYSIS OF PHYSICAL AND MECHANICAL CHARACTERISTICS INDEXES OF SOFT SOIL FOR THE LAKESHORE NEW DISTRACT IN HEFEI[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 86-89. doi: 10.13204/j.gyjz201305018
    [18]Cui Yongcheng, Cui Zizhi, Zhou Jian, Zhou Kang, Zhang Min. RESEARCH ON MECHANICAL PROPERTIES OF FLY ASH CEMENT SOIL IN YINCHAN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 105-109,151. doi: 10.13204/j.gyjz201207017
    [19]Tian Jianbo, Han Xiaolei, Liu Jiangyuan. LARGE-SCALE SIMPLE SHEAR TEST ON MECHANICAL PROPERTIES OF INTERFACE BETWEEN SANDY SOIL AND CONCRETE FACE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 110-114. doi: 10.13204/j.gyjz201207018
    [20]Li Weiwen, Yan Zhiliang, Sui Lili, Xing Feng, Cao Zhengliang. THE INFLUENCE OF TEMPERATURE-HUMIDITY CYCLES ON BENDING MECHANICAL BEHAVIOR OF CONCRETE BEAMS STRENGTHENED BY CFRP[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 27-32. doi: 10.13204/j.gyjz201004007
  • Cited by

    Periodical cited type(3)

    1. 张玉洁. 循环荷载下回收轮胎纤维改良路基土动力性能研究. 黑龙江交通科技. 2023(01): 42-45 .
    2. 郑瑞,李峥,康楠. 基于离散元法的纤维改良黄土力学性能研究. 工程勘察. 2023(08): 5-10 .
    3. 史誉州,郑晓燕,房世龙. 基于再生轮胎聚合物纤维和玻璃纤维的沿河软基固化研究. 水运工程. 2022(05): 26-32 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.0 %FULLTEXT: 6.0 %META: 90.2 %META: 90.2 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.4 %其他: 11.4 %China: 2.2 %China: 2.2 %[]: 0.5 %[]: 0.5 %上海: 0.5 %上海: 0.5 %东莞: 0.5 %东莞: 0.5 %乌鲁木齐: 1.6 %乌鲁木齐: 1.6 %北京: 11.4 %北京: 11.4 %南京: 0.5 %南京: 0.5 %南宁: 0.5 %南宁: 0.5 %台州: 2.2 %台州: 2.2 %天津: 0.5 %天津: 0.5 %常州市武进区: 0.5 %常州市武进区: 0.5 %常德: 0.5 %常德: 0.5 %廊坊: 0.5 %廊坊: 0.5 %延安: 2.2 %延安: 2.2 %张家口: 1.1 %张家口: 1.1 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.6 %杭州: 1.6 %桂林: 2.2 %桂林: 2.2 %武汉: 2.2 %武汉: 2.2 %沈阳: 0.5 %沈阳: 0.5 %济南: 1.1 %济南: 1.1 %湖州: 1.6 %湖州: 1.6 %白城: 1.1 %白城: 1.1 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.5 %福州: 0.5 %芒廷维尤: 14.1 %芒廷维尤: 14.1 %葫芦岛: 0.5 %葫芦岛: 0.5 %西宁: 20.5 %西宁: 20.5 %贵阳: 1.6 %贵阳: 1.6 %运城: 9.2 %运城: 9.2 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.2 %郑州: 2.2 %重庆: 0.5 %重庆: 0.5 %阳江: 0.5 %阳江: 0.5 %阳泉: 0.5 %阳泉: 0.5 %黄石: 0.5 %黄石: 0.5 %其他China[]上海东莞乌鲁木齐北京南京南宁台州天津常州市武进区常德廊坊延安张家口晋城朝阳杭州桂林武汉沈阳济南湖州白城石家庄福州芒廷维尤葫芦岛西宁贵阳运城邯郸郑州重庆阳江阳泉黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (166) PDF downloads(7) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return