Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 50 Issue 12
Mar.  2021
Turn off MathJax
Article Contents
ZHAO Xiaowan, LYU Jin, WANG Meihua, HUANG Mufan, XU Pengxu, PENG Jie. COMPARATIVE EXPERIMENTAL RESEARCH OF MECHANICAL PROPERTIES BETWEEN SAND CEMENTED BY MICROBIALLY INDUCED CARBONATE PRECIPITATION AND CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 15-18,49. doi: 10.13204/j.gyjzG20052521
Citation: ZHAO Xiaowan, LYU Jin, WANG Meihua, HUANG Mufan, XU Pengxu, PENG Jie. COMPARATIVE EXPERIMENTAL RESEARCH OF MECHANICAL PROPERTIES BETWEEN SAND CEMENTED BY MICROBIALLY INDUCED CARBONATE PRECIPITATION AND CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 15-18,49. doi: 10.13204/j.gyjzG20052521

COMPARATIVE EXPERIMENTAL RESEARCH OF MECHANICAL PROPERTIES BETWEEN SAND CEMENTED BY MICROBIALLY INDUCED CARBONATE PRECIPITATION AND CEMENT

doi: 10.13204/j.gyjzG20052521
  • Received Date: 2020-05-25
    Available Online: 2021-03-31
  • MICP is a research hotspot in soil improvement in recent years. However, the mechanical properties of sand cemented by MICP and conventional improvement with cement have not been sufficiently compared. To further clarify the mechanical properties of sand columns cemented by MICP and sand columns cemented with cement, sand columns comented by MICP or with cement were made, and the tests of unconfined compressive strength and splitting-tensile strength were performed. The test results showed that: the unconfined strength values of sand columns cemented by MICP with calcium carbonate contents of 7.1% and 10.4% were 221% and 117% of that cemented with cement of contents 7.14% and 10%, its splitting tensile strength were 609% and 228% of that cemented with cement. In a word, when the calcium carbonate content was as similar as the cement content, the unconfined compressive strength and splitting-tensile strength of sand columns cemented by MICP were higher than those of cement mortar.
  • loading
  • SHUNPU L. Application of Advanced Grouting Reinforcement in Dismantling Supports Roadway in Fully Mechanized Face[J]. Energy & Energy Conservation, 2018, 150(3):163-164.
    曹杰, 郑建国, 刘智, 等. 真空预压法处理软土地基的工程应用[J]. 岩土工程学报, 2017, 39(增刊2):124-127.
    SCHNEIDER M, ROMER M, TSCHUDIN M, et al. Sustainable Cement Production:Present and Future[J]. Cement and Concrete Research, 2011, 41(7):642-650.
    WHIFFIN V S, PAASSEN L A V, HARKES M P. Microbial Carbonate Precipitation as a Soil Improvement Technique[J]. Geomicrobiology Journal, 2007, 24(5):417-423.
    CACCHIO P, ERCOLE C, CAPPUCCIO G, et al. Calcium Carbonate Precipitation by Bacterial Strains Isolated from a Limestone Cave and from a Loamy Soil[J]. Geomicrobiology Journal, 2003, 20(2):85-89.
    刘鹏,邵光辉,黄容聘.微生物沉积碳酸钙胶结砂土力学特性及本构模型[J].东南大学学报(自然科学版),2019,49(4):720-726.
    刘汉龙,肖鹏,肖杨,等.MICP胶结钙质砂动力特性试验研究[J].岩土工程学报,2018,40(1):38-45.
    钱春香,王欣,於孝牛.微生物水泥研究与应用进展[J].材料工程,2015,43(8):92-103.
    PAASSEN V L A. Bio-Mediated Ground Improvement:From Laboratory Experiment to Pilot Applications[C]//Geo-Frontiers Congress. 2011.
    PAASSEN L A V, GHOSE R, LINDEN T J M V D, et al. Quantifying Biomediated Ground Improvement by Ureolysis:Large-Scale Biogrout Experiment[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(12):1721-1728.
    LIU L, LIU H, STUEDLEIN A W, et al. Strength, Stiffness, and Microstructure Characteristics of Biocemented Calcareous Sand[J/OL]. Canadian Geotechnical Journal,https://doi.org/10.1139/cgj-2018-0007.
    张越,郭红仙,程晓辉,等.微生物诱导碳酸钙沉积技术治理某地下室渗漏的现场试验[J].工业建筑,2013,43(12):138-143.
    王亚奇,丁文胜,张金飞,等.MICP修补液与传统混凝土裂缝修补材料的对比研究[J].混凝土与水泥制品,2018(5):10-14.
    郑俊杰,宋杨,赖汉江,等.微生物固化纤维加筋砂土抗剪强度试验研究[J].土木与环境工程学报(中英文),2019,41(1):15-21.
    张慧智, 史学正, 于东升, 等. 中国土壤温度的季节性变化及其区域分异研究[J]. 土壤学报, 2009, 46(2):227-234.
    郭伟. 基于MICP法的人工胶结砂力学特性试验研究[D].武汉:湖北工业大学,2017.
    崔明娟,郑俊杰,章荣军,等. 化学处理方式对微生物固化砂土强度影响研究[J]. 岩土力学,2015,36(增刊1):392-396.
    CHENG L, SHAHIN M A, MUJAH D. Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 143(1):04016083.
    杨钻. 高强微生物砂浆机理与工作性能研究[D].北京:清华大学,2013.
    彭劼,田艳梅,杨建贵.海水环境下MICP加固珊瑚砂试验[J].水利水电科技进展,2019,39(1):58-62.
    郑俊杰,吴超传,宋杨,等.MICP胶结钙质砂的强度试验及强度离散性研究[J].哈尔滨工程大学学报,2020,41(2):250-256.
    谭谦,郭红仙,程晓辉.微生物水泥砂浆的强度及耐久性试验研究[J].工业建筑,2015,45(7):42-47.
    高靖,高柏强.砂浆配合比设计在工程中应用的探讨[J].黑龙江科技信息,2009(2):264.
    贺军鱼.水泥砂浆配合比设计方法研讨[J].混凝土,2011(11):118-119,122.
    张声军,曹国巍,陈炜宁,等.建筑砂浆配比与稠度关系的试验研究[J].建筑机械化,2010,31(12):45-46.
    AL-SALLOUM Y,HADI S,ABBAS H,et al. Bio-Induction and Bioremediation of Cementitious Composites Using Microbial Mineralprecipitation:A Review[J].Construction and Building Materials,2017,154:857-876.
    张海丽,徐品品,冷立健,等.微生物诱导碳酸钙沉积研究与应用[J].生物学杂志,2020,37(1):86-91.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (126) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return