Two standard wall panel units were tested under bending load to study the flexural behavior of light-gauge steel stud concrete composite wall panel (SC wall panel) and the stud spacing was considered as an experimental parameter. The experimental results showed that the failure of SC wall panels were mainly caused by the buckling of the stud and the bearing capacity of the SC wall panel was controlled by the serviceability limit state. Moreover, stud spacing had a great influence on the bearing capacity of the SC wall panels. Then, finite element models of SC wall panels were established with ABAQUS and a parameter analysis was conducted. The results showed that the flexural behavior of SC wall panels was mainly influenced by the thickness of the keel, the height of the web, the type of the thermal insulation material, the air layer and the spacing of the shear studs. The flexural capacity of the composite wall panels could be greatly improved when the air layer was cancelled. Besides, replacing the rock wool with foam concrete could effectively restrict the deformation of the stud and improve the flexural capacity and energy dissipation capacity of the SC wall panels.
TELUE Y, MAHENDRAN M. Behaviour and Design of Cold-Formed Steel Wall Frames Lined with Plasterboard on Both Sides[J]. Progress in Steel Building Structures, 2007, 26(5):567-579.
TIAN Y S, WANG J, LU T J, et al. An Experimental Study on the Axial Behaviour of Cold-Formed Steel Wall Studs and Panels[J]. Thin-Walled Structures, 2004, 42(4):557-573.
夏冰青. 轻钢龙骨复合承载体系结构性能研究[D]. 南京:南京工业大学, 2003.
JAVAHERI-TAFTI M R, RONAGH H R, BEHNAMFAR F, et al. An Experimental Investigation on the Seismic Behavior of Cold-Formed Steel Walls Sheathed by Thin Steel Plates[J]. Thin-Walled Structures 2014, 80(1):66-79.
ZEYNALIAN M, RONAGH H R. Seismic Performance of Cold Formed Steel Walls Sheathed by Fibre-Cement Board Panels[J]. Journal of Constructional Steel Research, 2015, 107:1-11.